

 Int. J. Information and Decision Sciences, Vol. X, No. X, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Making an accurate classifier ensemble by voting on
classifications from imputed learning sets

Xiaoyuan Su and Taghi M. Khoshgoftaar*
Computer Science and Engineering,
Florida Atlantic University,
777 Glades Road,
Boca Raton, FL 33431,USA
E-mail: xsu@fau.edu
E-mail: taghi@cse.fau.edu
*Corresponding author

Russell Greiner
Department of Computing Science,
University of Alberta,
Edmonton, AB, Canada T6G 2E8
E-mail: greiner@cs.ualberta.ca

Abstract: Ensemble methods often produce effective classifiers by learning
a set of base classifiers from a diverse collection of the training sets. In this
paper, we present a system, voting on classifications from imputed learning sets
(VCI), that produces those diverse training sets by randomly removing a small
percentage of attribute values from the original training set, and then using an
imputation technique to replace those values. VCI then runs a learning
algorithm on each of these imputed training sets to produce a set of base
classifiers. Later, the final prediction on a novel instance is the plurality
classification produced by these classifiers. We investigate various imputation
techniques here, including the state-of-the-art Bayesian multiple imputation
(BMI) and expectation maximisation (EM). Our empirical results show that
VCI predictors, especially those using BMI and EM as imputers, significantly
improve the classification accuracy over conventional classifiers, especially on
datasets that are originally incomplete; moreover VCI significantly outperforms
bagging predictors and imputation-helped machine learners.

Keywords: machine learned classifiers; imputation techniques; incomplete
data; ensemble classifiers.

Reference to this paper should be made as follows: Su, X., Khoshgoftaar, T.M.
and Greiner, R. (xxxx) ‘Making an accurate classifier ensemble by voting on
classifications from imputed learning sets’, Int. J. Information and Decision
Sciences, Vol. x, No. x, pp.xx–xx.

Biographical notes: Xiaoyuan Su is currently a Senior Statistician and Data
Miner in Varolii Corporation, Seattle, WA, USA. He received his PhD in
Computer Science from Florida Atlantic University, USA, in 2008, and his
Master degree in Electrical and Computer Engineering from the University of
Alberta, Canada, in 2004. His research interests include data mining, machine
learning, web intelligence, recommender systems, database and computer

Au:
As per the
journal style
requirement
we should not
allow any
superscript
symbols in
the title.
Please
suggest.

 2 X. Su, T.M. Khoshgoftaar and R. Greiner

vision. He has co-authored about 20 refereed journal papers and conference
papers. He is a Member of IEEE, IEEE Computer Society and ACM.

Taghi M. Khoshgoftaar is a Professor of the Department of Computer Science
and Engineering, Florida Atlantic University and the Director of the Data
Mining and Machine Learning Laboratory. His research interests are in
software engineering, data mining and machine learning. He has published
more than 400 refereed papers in these areas. He is a Member of the IEEE and
IEEE Computer Society. He is the General Chair of the 21st International
Conference on Software Engineering and Knowledge Engineering (2009).
Also, he is on the editorial boards of the journals Software Quality, Fuzzy
Systems, and Knowledge and Information Systems.

Russell Greiner earned his PhD from Stanford. Currently, he is a Professor in
Computing Science at the University of Alberta and the founding Scientific
Director of the Alberta Ingenuity Centre for Machine Learning. He has been
Program Chair for the 2004 ICML, Conference Chair for 2006 ICML, Editor-
in-Chief for ‘Computational Intelligence’, and is serving on the editorial boards
of a number of other journals, including Machine Learning and JMLR. He was
elected a Fellow of the AAAI in 2007. He has published over 100 refereed
papers and patents, most in the areas of machine learning and knowledge
representation.

This is an extended work, by invitation, of the paper accepted and presented at
the 2008 IEEE International Conference on Information Reuse and Integration
(Su et al., 2008).

1 Introduction

Ensemble techniques can generally produce fairly accurate classifiers. Most, including
bagging (Breiman, 1996) and boosting (Freund and Schapire, 1997), first learn classifiers
from diverse training sets and then (at performance time) combine their responses for
each test instance.

In this work, we propose injecting diversities into the training set by randomly
removing observed values multiple times to produce n different incomplete learning sets.
We then use an imputation technique to fill in the missing values to produce n different
imputed (completed) training sets, then apply some base learner to each of the imputed
training sets to produce n different classifiers. For predicting novel test cases, each of
these classifiers returns a classification label for an instance; our system returns the most
frequent label as the final classification.

As removing attribute values from the training data is clearly removing information,
we expect the resulting learned classifier to make more mistakes. This does, however,
make the various base classifiers more diverse; existing research in ensemble methods
has shown that this diversity is critical (Kuncheva and Whitaker, 2003). Moreover, our
experimental results suggest that the predictive accuracy of each base classifier, trained
from an incomplete dataset produced by removing a small number of attribute values, is
often close to, or even occasionally better than, the classifiers trained from the original
dataset. The ensemble classifier, formed from these classifiers, is often more accurate
than just applying a standard learner to the original data (Su et al., 2008).

 Making an accurate classifier ensemble by VCI 3

For learning from incomplete data, we previously investigated the performance
of imputation-helped machine learners, which first preprocess incomplete data using
state-of-the-art imputation techniques (including Bayesian multiple imputation (BMI);
(Rubin, 1987) and expectation maximisation (EM); (Dempster et al., 1977)) to fill in
missing values, before giving the completed data to a conventional machine learning
algorithm (Su et al., 2008). Our empirical results show that EM- and BMI-imputed
machine learners generally outperform both the original classifiers and also classifiers
that use other imputers, such as the mean imputer and the linear regression (LinR)
imputer.

In this paper, we attempt to further improve the classification accuracy over
conventional machine learners (especially on initially incomplete datasets) by increasing
the diversity of the learning sets. A common approach to building diverse learners is to
inject randomness into the training data, then run an base learner on each learning set to
produce a set of classifier; the plurality vote over the labels produced by these classifiers
is typically better than one learned over the original dataset (Melville and Mooney, 2004;
Zhang et al., 2006). Common methods for injecting randomness include using bootstrap
aggregation (bagging predictors) (Breiman, 1996), using randomly selected features,
using randomly selected instances (Melville and Mooney, 2004) and applying aggressive
correction on the suspicious attribute values (Zhang et al., 2005). Motivated by these
results, we propose a system, voting on classifications from imputed learning sets (VCI),
that injects randomness into the data by randomly ‘removing then imputing’ values – that
is, forming several new datasets, each by first removing some given attribute values, then
imputing values to complete each incomplete dataset. We expect that this VCI approach
will produce classifiers that will outperform both conventional machine learners that deal
with incomplete data using simple approaches, and bagging predictors that build diverse
base learners only through bootstrap aggregation.

Our VCI system is parameterised by both the imputation technique I(.) and the base
learner L: X → Y it uses (as well as some other parameters – for example, the percentage
of data removed, the number of base classifiers learned, etc.). Here, we consider a wide
range of conventional machine learning algorithms L (from WEKA (Witten and Frank,
2005), see Section 2.3), including decision tree (C4.5), decision table (dTable), k nearest
neighbour (kNN), logistic regression (LR), naïve Bayes (NB), neural networks (NN),
one rule (OneR), decision list (PART), support vector machine (SVM) and random forest
(RF). We consider several imputation techniques I(.), including the baseline mean
imputation (MEI) and the state-of-the-art imputation techniques BMI and EM
(see Section 2.4).

We evaluate these VCI(L, I(.)) systems on ten complete datasets from UCI machine
learning repository (Blake and Merz, 2000), and an incomplete datasets that were
generated by artificially deleting attribute values from the complete datasets ‘completely
at random’ – that is ‘missing completely at random’ – that is ‘MCAR’ in that the
missingness does not depend on the observed data.

Section 2 presents the foundations of this work: summarising first ensemble methods,
our VCI system and then its components: the base machine learners L and the imputation
techniques I(.). Section 3 provides experimental design and results.

 4 X. Su, T.M. Khoshgoftaar and R. Greiner

2 Foundations

Our VCI is an ensemble system, which uses a base machine learning algorithm to learn
multiple classifiers on each of the imputed learning sets (with missing values filled in
using an imputation technique), then at performance time, votes for the final
classification from the multiple classifiers. This section first overviews ensemble
methods in general (Section 2.1); then introduces our specific ensemble method VCI
(Section 2.2). VCI uses some base learner L; Section 2.3 summarises ten such learners.
VCI also uses an imputation technique; Section 2.4 presents five such techniques
I(.): MEI, BMI, LinR imputation, EM imputation and predictive mean matching (PMM).

2.1 Ensemble classifiers

An ensemble classifier learns a set of classifiers instead of learning a single classifier, and
then combines the predictions of these classifiers to produce the final prediction. The key
step of an ensemble classifier is forming an ensemble of diverse classifiers from a single
training set.

The well-known bagging predictor (Breiman, 1996) draws bootstrap samples as
multiple learning sets from the single training dataset, and learns a classifier for each of
the learning sets; at performance time, it runs all of these classifiers on a novel instance,
then returns the class that receives the highest number of votes. Another famous
ensemble approach, boosting (Freund and Schapire, 1997), trains the kth classifier by
focuses on training examples misclassified by the earlier k−1 classifiers; at performance
time, it runs all of these classifiers on a novel instance then returns a combination of their
results with a weighting based on their respective classification errors. Other approaches
form an ensemble of classifiers by modifying the learning task through pairwise
classification or round robin learning; or by exploiting the algorithm characteristics, such
as using randomised algorithms or using multiple algorithms with different characteristics
(Melville and Mooney, 2004).

2.2 Our VCI ensemble system

At training time, our VCI system first deletes m% of the observed values in the
underlying incomplete dataset (that is missing k% of its values; note k = 0 corresponds to
complete data) completely at random (i.e. flipping a k% coin, independently for each
attribute value), to create n incomplete learning sets (resulting in (k + m)% missing data;
note that this will remove the values of different instance/feature pairs for different
learning sets); VCI then produces n classifiers, one from each diminished dataset. For
each, it uses some imputation technique I(.), such as the MEI, EM or BMI to impute
values. It then uses a machine learner L, for example SVM or kNN, to learn classifiers
from the imputed datasets. Later, to classify a new instance x, VCI gives x to each base
classifier to produce a set of n labels; VCI then returns the most frequent of the labels
(see Figure 1).

 Making an accurate classifier ensemble by VCI 5

Figure 1 Framework of VCI predictors (see online version for colours)

Note: Given an initial dataset (missing k% of the values), randomly generate n
incomplete datasets by removing m% of the observed values n times; impute the
missing values to generate n (slightly different) training sets, and then learn a
classifier on each imputed dataset. To subsequently classify a new instance, have
each classifier produce its classification, then return the most frequent
classification.

2.3 Machine learning algorithms used

In general, a learning algorithm takes as input a set of labelled instances and returns a
classifier; that classifier in turn takes as input an unlabelled instance and returns a single
label. Here, we consider the following ten algorithms L from WEKA (Witten and Frank,
2005). While each algorithm will see only complete (imputed) training instances within
VCI(L, I(.)), the VCI(L, default) system will run L on incomplete data, using L’s default
approach to dealing with incomplete data. We therefore summarise the base machine
learning algorithms and how each of them handles incomplete data, below.

2.3.1 Decision table

Decision table (dTable) is a set of schema/body pairs, where each schema is a set of
attributes, and a body consists of labelled instances from the space defined by the features
in the schema (Kohavi, 1995). Given an unlabelled instance, the dTable classifier
searches for exact matches in the decision table only using the features in the schema. If
it finds no such matching instances, it then returns the majority class; otherwise, it returns
the majority class of all matching instances. DTable ignores missing values during the
learning and classification processes.

2.3.2 Decision tree

Decision tree (C4.5) grows decision trees from the root downward, greedily selecting the
next attribute for each new decision branch added to the tree. Its various decisions, such

 6 X. Su, T.M. Khoshgoftaar and R. Greiner

as which attribute to select and whether to stop, are based on information gain. Here, the
C4.5 algorithm just ignores missing values. It classifies an instance by following the tree
from the root to a leaf. If an instance reaches a node labelled with a feature that is
missing, the decision will descend down all branches, but with a probability based on the
percentage of training instances that went down that branch (Quinlan, 1993). The final
classification will be the most likely outcome, based on the summed likelihood.

2.3.3 Decision list

PART is a decision list classifier based on partial decision trees (does not do optimisation
as decision tree does), which combines C4.5 and the RIPPER rule classifier
(Cohen, 1995) for rule generation by creating rules from decision trees and the
separate-and-conquer rule learning technique. PART deals with missing values using the
same strategy as C4.5 (Frank and Witten, 1998).

2.3.4 Naïve Bayes

NB is a simple Bayesian network that assumes attribute values are conditionally
independent given the class. It typically assumes that numeric attributes obey a Gaussian
distribution (John and Langley, 1995). NB learns by estimating the prior probability of
each class and the conditional distributions of each attribute given the class. It simply
ignores attribute values that are missing during both learning and classifying.

2.3.5 Logistic regression

LR uses a multinomial LR model with a ridge estimator, and uses a
ReplaceMissingValuesFilter to replace the missing values with the mean (for numeric
attributes) or the most frequent value (for nominal attributes) (Le Cessie and van
Houwelingen, 1992) during the training stage.

2.3.6 Random forest

RF grows many classification trees and uses a voting scheme to determine the final
classifications. To classify a new instance, it first asks each tree in the forest for its
classification, and then takes the classification having the most votes. The RF learner
replaces the missing values with the median value for numeric attributes or the most
frequent value for nominal attributes. RF fills in the missing data in test set using filled-in
values from the training set (Breiman, 2001).

2.3.7 One rule

OneR is a rule-based classifier that infers one rule that predicts the class based on the
most informative attribute. Each attribute is assumed to be discrete, otherwise it must be
discretised. Missing values are treated as a new value, ‘missing’ (Holte, 1993).

2.3.8 Support vector machine

A kernel-based SVM produces non-linear boundaries by constructing a linear boundary
in a large, transformed (kernelised) version of the feature space. The SVM

 Making an accurate classifier ensemble by VCI 7

implementation in WEKA uses the sequential minimal optimisation (SMO) algorithm
(Platt, 1998) for training a support vector classifier using polynomial (which we used) or
RBF kernels. This implementation globally replaces all missing values by a default value,
for example ‘unknown’.

2.3.9 K nearest neighbour

A kNN classifier finds the k labelled instances in the training data (‘neighbours’) that are
nearest to the given unlabelled instance, and returns the average value of the real-valued
labels of the neighbours, and the most frequent label for nominal ones. The distance of
the neighbours is defined in terms of Euclidean distance for continuous attributes and
Hamming distance for discrete ones. KNN handles missing values by means of a minor
change in the distance measure: when the two instances each miss the values of the same
attribute, the distance on that attribute is zero, but when only one has a missing value, a
maximal distance is assigned (Witten and Frank, 2005).

2.3.10 Neural network

A NN is composed of interconnected input/output units, where each connection has an
associated weight, typically learned by the backpropagation algorithm. Many NN models
have been modified to handle missing data. Following (Ishibuchi et al., 1993), we replace
each missing value by an interval that includes all of the possible values on that attribute
(e.g. a unit interval [0, 1]), and also replace each observed value by a degenerate interval
(e.g. 0.7 transformed to [0.7, 0.7]), before applying the backpropagation algorithm.
Learning and making classification from incomplete data are therefore turned to
classification of the (complete) interval vectors.

2.4 Imputation methods used

After removing a small percentage of attribute values, VCI uses some imputation
techniques to fill in the missing information. This subsection summarises five such
imputers.

2.4.1 Mean imputation

MEI fills in each missing value with the mean of the values observed values for the
corresponding attribute,

MEI ,()

1
| () | u iu U i

Y
U i

θ
∈

= ∑ (1)

where each instance u ∈ U(i) has an observed values of attribute i. Many machine
learning algorithms use MEI as it is an extremely simple imputation technique.
Unfortunately, it is problematic as it can distort the shape of distributions by creating a
spiked distribution at the mean in frequency distributions, which attenuates the
correlation of the associated item with others; and it also reduces (underestimates) the
variance of the predictions which generally leads to incorrect inferences.

 8 X. Su, T.M. Khoshgoftaar and R. Greiner

2.4.2 Bayesian multiple imputation

Standard single imputation produces a single imputed dataset where each missing value is
replaced with a single value. While this approach can be applied to virtually any dataset,
single imputation does not account for the uncertainty about the predictions of the
imputed values; this can lead to statistically invalid inferences (Rubin, 1987). By
contrast, multiple imputation (MI) produces many different imputed datasets. For
example, consider imputing a value in the (2, 1) position in the left 5 x 3 table in Figure 2
(here the entry (i, j) is the value of the jth feature of the ith instance Ri). Here, we could
produce m = 4 different completed datasets, shown as the middle column of four tables in
that figure; note the proposed values for this (2, 1) entry are {1, 1, 3, 3}. BMI uses the
average of these four values (here, 2) as the final prediction – see the right 5 x 3 table in
the figure. In many situations, MI approaches have proven to be highly effective even for
small values of m – say 3–15 (Rubin, 1987).

BMI follows a Bayesian framework: it specifies a parametric model for the complete
data, with a given a priori distribution over the unknown model parameters θ, then
simulates m independent draws from the conditional distribution of the missing data
given the observed data. While BMI assumes a multivariate normal distribution when
generating the imputations for missing values, it is robust to non-normally distributed
data (Schafer, 1997). In non-trivial applications, special computational processes, like
Markov chain Monte Carlo (MCMC), must be applied to perform BMI (Rubin, 1987).

BMI imputes data as follows (Rubin, 1987): Let P(Ycom|θ) model the complete data
based on the parameter θ (which here is the mean and covariance matrix that
parameterises a normal distribution). If Y = (Yobs, Ymiss) follows a parametric model
P(Y|θ) where θ has the prior distribution P(θ), then the posterior predictive distribution
for Ymiss is

() () ()miss obs miss obs obs| | , | dP Y Y P Y Y P Yθ θ θ= ∫ (2)

Figure 2 An example of BMI with m = 4

Note: Each value in the shaded cells is an imputed value. BMI produces different
imputed datasets (the middle tables) and takes the average of the m predictions as
the final imputed dataset (the right table).

 Making an accurate classifier ensemble by VCI 9

Equation (2) suggests that BMI can be drawn by iterating the following process for
j = 1, …, n:

1 generate missing values Ymiss
(j+1) from P(Ymiss|Yobs, θ (j))

2 draw parameters fromθ (j+1) from P(θ|Yobs, Ymiss
(j+1)).

Repeat these two steps to generate the Markov chain {Ymiss
(1), θ (1), Ymiss

(2), θ (2), …, Ymiss
(j),

θ (j), …}; note that Ymiss
(j+1) depends on θ (j) and θ (j) depends on Ymiss

(j). This entire process
is repeated until the distribution P(Ymiss, θ |Yobs) is stabilised (Schafer, 1997).

After producing m sets of filled-in values, BMI takes the average as the final imputed
values,

1

1 m

i
im

θ θ
∧

=

= ∑ (3)

where îθ is the imputation in the ith set of imputed values.
We round the BMI imputed values to the nearest integers for integer attributes. We

also find the observed value range [min, max] for each attribute, and replace imputed
values < min with min, and those > max with max for missing values. We also apply this
post-processing procedure to the other imputers described below.

2.4.3 Linear regression imputation

LinR imputation predicts the missing value of one attribute based on the observed
values of other attributes. In general, given a one-dimensional vector of inputs
X = (X1, X2, …, Xp), LinR estimates the dependent value Y based on the LinR model

0
1

p

j j
j

Y Xβ β ε
=

= + +∑ (4)

where the residual ε is a random variable with mean zero, and the coefficients β0 and
β = (β1, β2, …, βp)T are trained on the existing values to minimise the L2 norm (square
root of the sum of the squares of the residuals) (Spaeth, 1991). Here, Y is the missing
feature value to be imputed and each Xj is the value of an observed feature of the same
instance.

To illustrate, consider again the simplified example in the upper left table of Figure 2,
which corresponds to five instances, each involving three features. To estimate r(2, 1),
notice the instance R2 has observed values for attributes A2 and A3. The LinR imputer
would first find all other instances that have observed values for these attributes, and also
A1 (the attribute we want to predict a value for); this identifies instances R(A1, A2,
A3) = {R1, R4, R5}. LinR then seeks coefficients β0, β2 and β3 such that r(Ri,
A1) = β0 + β2r(Ri, A2)+β3r(Ri, A3). Using this data subset {r(Uj, Ik)|j ∈ {1, 4, 5}, k ∈ {1,
2, 3}}, the best-fit line has β0 = −1, β2 = 0 and β3 = 1. LinR now computes its prediction
for r(R2, A1) = β0 + β2r2, 2 + β3r2, 3 = 2. Here, there were three equations (for R1, R4, R5)
and three unknowns {β0, β2, β3} which produces this unique solution. In other situations,
there might be more equations than unknowns; here, we use standard linear least square
estimate (Spaeth, 1992).

 10 X. Su, T.M. Khoshgoftaar and R. Greiner

2.4.4 Expectation maximisation imputation

EM seeks maximum likelihood estimates of parameters in probabilistic models in the
presence of latent variables (Dempster et al., 1977). EM imputation requires specifying a
joint probability distribution for the feature value to be imputed and other feature values.
EM iterates between performing an expectation E-step, which calculates an expected
value of the complete data likelihood, given the observed data and the current parameters;
and a maximisation M-step, which computes values of the parameters that maximise the
expected likelihood over the data including those estimated in the E-step. The parameters
found on the M-step are then used to begin another E-step, and the process is repeated
until it converges to a stationary point.

Our implementation of the EM algorithm, like BMI, assumes the data follows a
multivariate Gaussian distribution (parameterised by the mean and the covariance
matrix), and uses a ridge regression (Schneider, 2001). It first produces an initial guess of
these parameters. In each subsequent iteration, EM updates its estimates of the mean and
the covariance matrix in the following two steps (Schneider, 2001):

1 E-step: replace the missing values in an instance with their conditional expectation
values given the observed values using the estimated mean and covariance matrix.

2 M-step: re-estimate the mean and the covariance, using the instance mean of the
completed dataset and the covariance matrix as the sum of the instance covariance
matrix of the completed dataset and the contributions from the conditional
covariance matrix of the imputation errors.

EM iterates these steps until the imputed values and the estimates of the mean and
covariance stop changing (Little and Rubin, 1987).

2.4.5 Predictive mean matching imputation

PMM (Landerman et al., 1997) imputes the missing values Ymiss, i of an incomplete
instance (recipient) Yi, based on the observed part of that instance Yobs, i using a distance
function (Equation (6)) that is computed as the expected values of the missing variables
conditioned on the observed covariates, instead of directly on the values of the covariates.
Our version of PMM works as follows:

1 Use the EM algorithm (Dempster et al., 1977) to estimate the parameters θ of a
multivariate Gaussian distribution over the attribute values using all the available
data.

2 Based on these estimates, compute the conditional expected value for the missing
part Ymiss, i of instance Yi conditioned on the observed part Yobs, i based on the
estimated parameters θ

()miss, obs,| ,i ii E Y Yμ θ
∧

= . (5)

3 Each recipient Yi is matched to the instance (possible donor) Yj = argminj d(i, j) that
has the nearest predictive mean with respect to the Mahalanobis distance,

() ()
miss, obs,

T 1

|
ˆ ˆ ˆ ˆ(,)

i i
i j i jY Y

d i j Sμ μ μ μ
−

= − − (6)

Au:
Please check
this sentence
‘EM
imputation
requires …’
under
Section 2.4.4
as it appears
it may be
incomplete.

 Making an accurate classifier ensemble by VCI 11

where
miss, obs,

1

|i iY YS − is the residual covariance matrix from the regression of the missing

items on the observed ones (Landerman et al., 1997).

4 Impute missing values in each recipient using the corresponding values from its
closest donor.

In the example in the upper left table of Figure 2, PMM first uses EM to estimate the
values of each missing instance – for example, for the incomplete instance (recipient) Y2,
PMM computes the predictions of the missing feature values, Ymiss, 2 = {r(2, 1)},
conditioned on the observed feature values Yobs, 2 = {r(2, 2), r(2, 3)} = {4, 3}, of the
entire row associated with the instance Y2. The same predictive means are computed for
all the possible donors Yj, that is, Yj = {r(j, 1), r(j, 2), r(j, 3)} where this j varies over all
instances except the recipient Y2. The recipient Y2 is then matched to the donor that has
the closest predictive mean in terms of the Mahalanobis distance, which here is
Y1 = {r(1, 1), r(1, 2), r(1, 3)}; hence the missing value r(2, 1) is imputed by taking the
corresponding value r(1, 1) = 2 from Y1.

3 Experimental design and results

3.1 Preliminary experiments on imputation techniques

Before applying the imputation techniques into VCI predictors, we first investigated
the effectiveness of the imputers, including MEI, BMI, LinR, PMM and EM. We work
on the UCI machine learning repository dataset ‘letter’, which has 20,000 samples and
16 attributes, each of which ranges over the values {0, 1, 2, …, 15}. We randomly
remove values from the dataset to generate eight datasets, with missing ratios of 10%,
20%, …, 80%. By applying the imputation techniques, we compare the imputed values
with the ground truth, and calculate the respective root mean square error (RMSE) of
these imputed values on this specific dataset.

()2, ,{ , }

1RMSE u i u iu i
p r

n
= −∑ (7)

where n is the total number of estimated values by an imputer, pu, i is the imputed value
for instance u on attribute i and ru,i is the ground truth value.

Table 1 and Figure 3 show that EM and BMI perform the best on this dataset. MEI
has almost stable accuracy on datasets with different missing ratios (it is therefore
relatively worse for dense datasets and relatively better for sparse ones), and the other
two imputation techniques, PMM and LinR, fall far behind.

Although second to the EM imputer, the BMI imputer is robust to datasets with
missing ratio higher than 50%, for which EM often fails to produce imputations due to an
eigenvalue calculation exception (this is why Figure 3 includes only the EM results for
datasets with missing ratios at most 50%).

 12 X. Su, T.M. Khoshgoftaar and R. Greiner

Table 1 The RMSE performance of the imputation techniques on the dataset ‘letter’ with
different missing ratios

Ratio% BMI EM PMM LinR MEI

10 1.7017 1.5089 2.2699 2.2653 2.3249
20 1.7516 1.6557 2.3627 2.3580 2.3346
30 1.8066 1.7090 2.4194 2.4115 2.3297
40 1.8637 1.7677 2.5147 2.5057 2.3264
50 1.9325 1.8203 2.5992 2.5916 2.3339
60 2.0042 NA 2.7114 2.7127 2.3292
70 2.1008 NA 2.8481 2.8451 2.3293
80 2.2424 NA 2.9941 2.9905 2.3301

Figure 3 The RMSE performance of the imputation techniques on the dataset ‘letter’ with
different missing ratios (see online version for colours)

BMI is also very efficient, requiring only about 5 min to impute the dataset ‘letter’ (on
our computer with a 3.2 GHz Intel CPU and 4 GB RAM) at the missing ratio of 50%.
However, PMM and EM require more than 20 min each using the same machine.

Based on the above preliminary experiments, we dropped the imputation techniques
PMM and LinR from further experiments.

3.2 Experimental design

We apply our proposed VCI(L, I(.)) system using the I(.) ∈ {MEI, BMI, EM} imputation
techniques. We investigated VCI predictors on both complete datasets and incomplete
datasets.

We worked on ten datasets with numeric or ordinal attributes from the UCI machine
learning repository (Blake and Merz, 2000; see Table 2) (We focus on this class of data
as each of these imputers only deals with numeric and ordinal data, but not categorical
data). We applied each of the ten base learners L introduced in Section 2.3, in general,
using the default parameters given by WEKA. We used 50 trees for the RF classifier and

 Making an accurate classifier ensemble by VCI 13

used k =5 as the number of neighbours for the kNN classifier, which produced optimal
performance in our preliminary experiments. When implementing our proposed imputers,
BMI and EM iterate until they converge. For example, on the dataset ‘letter’ with 30%
missing ratio, BMI needs nine iterations to converge while EM needs six. When
preprocessing the incomplete data with an imputer, we impute the training and test sets
together. Notice, none of the imputers use the class labels of the test sets. (Our empirical
results show that classifying on the imputed test data (excluding class labels) slightly but
insignificantly outperforms classifying on the original incomplete test data.)

We used the standard training and test splits for each of these UCI datasets: 2/3 of the
instances for training and 1/3 for testing, except the dataset ‘letter’, where we used a 3/4
to 1/4 split, and the dataset ‘waveform’, where we trained on 300 instances and tested
on 4,700.

How many learning sets should VCI produce for each dataset? We know that small
numbers may incur high biases and large numbers will increase computational expense.
We want an odd number in order to break ties in voting, especially for binary class
datasets. Therefore, we focussed on 7 ~ 11 and decided to use n = 9. To compare, we also
use n = 9 bootstrap learning sets for the bagging predictors, which performs similarly to
the WEKA default setting of n = 10. We formed each such learning dataset by randomly
removing 3% of the attribute values (see the discussion in Section 3.4).
Table 2 Description of the datasets used in our experiments

Datasets #Train #Test #Attribute #Class

Australian 460 230 14 2
Breast-wisc 466 233 10 2
Diabetes 512 256 8 2
Heart 180 90 13 2
Letter 15,000 5,000 16 26
Pima 512 256 8 2
Satimage 4,290 2,145 36 6
Segment 1,540 770 19 7
Vehicle 564 282 18 4
Waveform 300 4,700 21 3

3.3 VCI predictors on complete datasets

We first investigate VCI predictors on complete data (i.e. the special case of ‘incomplete
data’ with missing ratio of 0%) on the ten datasets described in Table 2.

Table 3 and Figure 4 show the classification accuracy of VCI(L, …) predictors as well
as the original classifier L and bagging, over all ten complete datasets. We see that VCI
improves average classification accuracy over the base classifiers L except NB, RF and
LR. Over all base learners L, VCI(L, EM) and VCI(L, BMI) perform significantly better
than the original learners L with one-sided t-test p < 0.01 and p < 0.008, respectively.
VCI(L, EM) insignificantly outperforms bagging predictors with p < 0.1. Other VCI
predictors also outperform the original classifiers, and perform slightly better than or
equivalent to bagging predictors.

 14 X. Su, T.M. Khoshgoftaar and R. Greiner

Table 3 Average classification accuracy of VCI predictors over ten UCI complete datasets

Base learners Original classifiers Bagging VCI default VCI MEI VCI EM VCI BMI

OneR 67.10 68.10 68.50 68.39 68.56 68.50
NB 76.97 76.79 76.31 75.99 76.10 76.03
DTable 81.14 82.84 82.01 82.63 82.91 82.27
C4.5 85.19 86.83 87.10 86.90 86.76 86.89
KNN 85.76 84.64 85.93 86.35 86.76 86.58
PART 84.98 86.45 87.76 86.98 87.43 86.98
SVM 84.41 85.59 84.54 84.69 84.94 85.31
LR 85.70 85.73 85.70 85.67 85.63 85.99
NN 85.35 86.92 86.29 87.13 87.32 86.50
RF 88.11 87.12 87.56 87.51 87.90 87.93
Average 82.47 83.10 83.17 83.22 83.43 83.30

Figure 4 Average classification accuracy of VCI predictors over ten UCI complete datasets
(see online version for colours)

Note that VCI(L, default), which uses each L’s default method to deal with missing
values (described in Section 2.2), significantly outperforms original classifiers L with
p < 0.037.

 Making an accurate classifier ensemble by VCI 15

3.4 VCI predictors on incomplete datasets

We have shown that VCI works on complete data; now, we experiment to see if it also
works on incomplete data.

We first present our results on incomplete datasets generated from the complete
datasets (see Table 2) by randomly deleting 30% of the observed values. We then report
results on the dataset ‘waveform’, with missing ratios of 10%, 20%, …, 50% to
investigate performance of VCI predictors on incomplete data with different missing
ratios. We finally explore the effects of the injected missing ratio m% on the predictive
accuracy of VCI predictors.

From Table 4 and Figure 5 (see Appendix for more detailed results of VCI predictors
with each base learner L on every dataset), we found VCI(L, BMI) and VCI(L, EM)
significantly outperform original learners L by 10.2% and 9.7% higher average
classification accuracy (with p < 0.0032 and p < 0.0042, respectively); VCI(L, BMI) and
VCI(L, EM) perform significantly better than bagging predictors with 9.4% and 9.0%
higher average classification accuracy (with p < 0.026 and p < 0.032, respectively). To
compare, we also implemented imputation-helped learners (machine learners that learn
classifiers on imputed training data instead of originally incomplete data) (Su et al.,
2008), and found VCI(L, BMI) outperforms BMI-imputed machine learners (imputation-
helped learners using BMI as the preprocessor for incomplete data) with 3.0% higher
average classification accuracy (p < 0.00065); VCI(L, EM) has 1.7% higher average
accuracy than EM-imputed machine learners (p < 0.015). VCI(L, MEI) outperforms
MEI-imputed machine learners with 7.2% better accuracy (p < 0.018), and it outperforms
the original classifiers and bagging predictors with 4.5% and 3.8% better average
classification accuracy, respectively (with p < 0.049 and p < 0.17, respectively).

VCI(L, I(.)) predictors greatly improve classification accuracy on incomplete data for
almost all of the respective machine learned classifiers L, we investigated in this work,
including the stable learners kNN and RF, which regular ensemble classifiers such as
bagging fail to improve.

VCI using BMI and EM on kNN (VCI(kNN, BMI) and VCI(kNN, EM)) have 39.5%
and 39.3% accuracy improvements, respectively, over the original kNN classifier. We
believe this is due to the crude way that kNN handles missing data (see Section 2.3), and
the observation that imputed values can be better used for distance calculation than the
missing values. Moreover, voting on the classifications from the diverse imputed learning
sets further improves the performance.

On another stable learner, NB, however, VCI(NB, I(.)) predictors perform slightly
worse. This is because NB classifies an instance by computing the class with maximum
probability given the observed values, while imputing diverse learning sets and voting
based on their classifications often do not provide better inference for NB.

We investigated the performance in terms of accuracy of VCI predictors on the
dataset ‘waveform’ with missing ratios 10–50%. Table 5 and Figure 6 show that VCI(L,
BMI) and VCI(L, EM) dominate over their rivals, and enlarge their advantage on datasets
with higher missing ratios. VCI(L, default) predictors (that use the default simple ways to
handle incomplete data) and MEI-imputed machine learners perform equivalently with
bagging predictors; and VCI(L, MEI) predictors perform better than bagging predictors.
BMI-imputed and EM-imputed machine learners perform better than the original
classifiers, bagging predictors and VCI(L, MEI), but inferior to VCI(L, BMI) and VCI
(L, EM).

 16 X. Su, T.M. Khoshgoftaar and R. Greiner

Table 4 Average classification accuracy of VCI predictors over ten UCI incomplete datasets
with 30% missing ratios

Base
learners

Original
classifier Bagging VCI-MEI BMI-impute EM-impute VCI-EM VCI-BMI

OneR 56.33 59.09 56.41 63.26 63.75 63.95 64.44
NB 73.35 73.58 71.59 72.18 72.66 72.54 72.55
DTable 66.35 65.36 71.96 72.99 74.20 75.72 76.11
LR 75.03 74.36 74.49 76.94 78.00 78.21 78.57
SVM 74.68 74.82 75.17 78.04 78.60 78.69 79.52
NN 70.72 74.77 76.58 78.14 77.81 79.61 79.86
C4.5 73.93 77.63 76.64 75.54 76.52 80.74 80.38
kNN 57.61 48.38 74.41 78.56 79.50 80.25 80.39
PART 75.12 79.88 77.75 76.49 76.87 80.71 81.3
RF 80.18 80.45 80.03 80.51 81.03 81.33 81.76
Ave 70.33 70.83 73.50 75.26 75.89 77.17 77.49

Figure 5 Average classification accuracy of VCI predictors over ten UCI incomplete datasets
with 30% missing ratios (see online version for colours)

 Making an accurate classifier ensemble by VCI 17

Table 5 Average classification accuracy of VCI predictors over ten classifiers on the dataset
‘waveform’ with missing ratios 10–50%

Predictors 10% 20% 30% 40% 50%

Original classifiers 72.86 71.21 68.3 66.67 63.91
Bagging predictors 74.98 73.44 69.67 68.47 64.63
BMI-imputed 75.37 75.22 74.88 73.51 72.03
EM-imputed 75.56 75.51 75.81 73.31 73.69
MEI-imputed 73.43 72.5 69.97 67.73 66.19
VCI-BMI 77.76 77.75 77.28 76.51 74.21
VCI-EM 77.52 77.42 77.19 75.79 74.49
VCI-default 74.83 73.1 69.53 68.13 65.5
VCI-MEI 75.95 75.03 71.57 70.05 68.14

Figure 6 Average classification accuracy of VCI predictors over ten classifiers on the dataset
‘waveform’ with missing ratios 10–50% (see online version for colours)

To investigate the impact of injected missing ratios on VCI predictors, we applied
VCI(L, EM) to the ‘waveform’ dataset that has a 30% original missing ratio, and
additionally removed observed values with injected missing ratio m% = 1–9%. The
results (see Figure 7) show that, for most learners L, VCI(L, EM) with injected missing
ratios ≥ 3% perform similarly to each other (with different m%). VCI(C4.5, EM) and
VCI(dTable, EM) have better classification accuracy with higher injected missing ratios
over the above injected missing ratio span. As the classification accuracy of VCI
predictors and other classifiers generally decrease with higher missing ratios, we did not
consider an injected missing ratio ≥ 8%. We therefore recommend an injected missing
ratio between 3% and 8%; here, we used 3%.

 18 X. Su, T.M. Khoshgoftaar and R. Greiner

Figure 7 Impact of injected missing ratios on VCI predictors: VCI-EM on the ‘waveform’
dataset with 30% missing ratio and different injected missing ratios (see online version
for colours)

The computational expense for VCI predictors is imputation_time + training_time for
preprocessing and training time, and classifying_time × number_of_learning_sets +
voting_time for performance time. The ‘number of learning sets’ factor is standard for
ensemble classifiers (such as bagging, boosting). Here, the extra expense is the
imputation time. As we mentioned in Section 3.1, the imputation for the biggest dataset
in our experiments, ‘letter’ (with 30% missing data), using BMI takes only a few
minutes. For most mid-sized or small-sized datasets, the imputation time is ignorable.

As missing data that are not missing at random (NMAR) are usually problem specific,
we did not experiment on datasets with this missing mechanism. We plan to investigate
the impact of using these imputation techniques for incomplete data that are missing at
random (MAR, whose missingness depends on observed values but not on unobserved
ones) in our future work. We also plan to investigate VCI predictors on categorical data
in our future work.

4 Conclusions

We propose a novel ensemble approach, VCI, that produces many diverse learning sets
by first removing observed attribute values multiple times and then imputing the resulting
incomplete learning sets using state-of-the-art imputation techniques, such as BMI and
EM. It then uses a base learner to learn a classifier for each imputed learning set. Our
empirical studies show that VCI predictors (whose classification is the plurality over the
individual classifiers) can significantly improve the classification accuracy over
conventional classifiers, especially for incomplete datasets with high missing ratios.

 Making an accurate classifier ensemble by VCI 19

VCI(L, BMI) (VCI using BMI as the imputer, and a base learner L) and VCI(L, EM)
significantly outperform most of the respective machine learned classifiers L we
investigated, including kNN, NN, OneR, decision table, SVM, LR, decision tree (C4.5),
RF and decision list (PART). VCI predictors also have significantly better performance
than the well-known bagging predictors and imputation-helped machine learners, and
perform especially well for the stable process kNN where bagging fails to improve
accuracy.

References
Blake, C. and Merz, C. (2000) UCI Repository of Machine Learning Databases. Available at:

http://www.ics.uci.edu/~mlearn/MLRepository.html.
Breiman, L. (1996) ‘Bagging predictors’, Machine Learning, Vol. 24, p.2.
Breiman, L. (2001) ‘Random forests’, Machine Learning, Vol. 45, No. 1, pp.5–32.
Cohen, W. (1995) ‘Fast effective rule induction’, Proceedings of the 12th International Conference

on Machine Learning (ICML), pp.115–123.
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) ‘Maximum likelihood from incomplete data

via the EM algorithm’, Journal of the Royal Statistical Society, Vol. B39, pp.1–38.
Frank, E. and Witten, I.H. (1998) ‘Generating accurate rule sets without global optimization’,

Proceedings of the 15th International Conference on Machine Learning (ICML), pp.144–151.
Freund, Y. and Schapire, R.E. (1997) ‘A decision-theoretic generalization of on-line learning and

an application to boosting’, Journal of Computer and System Sciences, Vol. 55, No. 1,
pp.119–139.

Holte, R.C. (1993) ‘Very simple classification rules perform well on most commonly used
datasets’, Machine Learning, Vol. 11, pp.63–91.

Ishibuchi, H., Miyazaki, A., Kwon, K. and Tanaka, H. (1993) ‘Learning from incomplete training
data with missing values and medical application’, Proceedings of 1993 International Joint
Conference on Neural Networks (IJCNN), pp.1871–1874.

John, G.H. and Langley, P. (1995) ‘Estimating continuous distributions in Bayesian classifiers’,
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI),
pp.338–345.

Kohavi, R. (1995) ‘The power of decision tables’, Proceedings of the 8th European Conference on
Machine Learning (ECML), pp.174–189.

Kuncheva, L. and Whitaker, C. (2003) ‘Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy’, Machine Learning, Vol. 51, p.2.

Landerman, L.R., Land, K.C. and Pieper, C.F. (1997) ‘An empirical evaluation of the predictive
mean matching method for imputing missing values’, Sociological Methods and Research,
Vol. 26, pp.3–33.

Le Cessie, S. and van Houwelingen, J.C. (1992) ‘Ridge estimators in logistic regression’, Applied
Statistics, Vol. 41, No. 1, pp.191–201.

Little, R.J.A. and Rubin, D.B. (1987) ‘Statistical analysis with missing data’, Series in Probability
and Mathematical Statistics, Wiley, p.278.

Melville, P. and Mooney, R.J. (2004) ‘Creating diversity in ensembles using artificial data’,
Journal of Information Fusion, Vol. 6, No. 1, pp.99–111.

Platt, J. (1998) ‘Fast training of support vector machines using sequential minimal optimization’,
Advances in Kernel Methods Support Vector Learning, pp.185–208.

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning. Los Altos: Morgan Kaufmann.
Rubin, D.B. (1987) Multiple Imputation for Non response in Surveys. New York, NY:

J. Wiley & Sons.

 20 X. Su, T.M. Khoshgoftaar and R. Greiner

Schafer, J.L. (1997) Analysis of Incomplete Multivariate Data. New York, NY: Chapman and Hall.
Schneider, T. (2001) ‘Analysis of incomplete climate data: estimation of mean values and

covariance matrices and imputation of missing values’, Journal of Climate, Vol. 14,
pp.853–871.

Späth, H. (1992) Mathematical Algorithms for Linear Regression. Boston, MA: Academic Press.
Su, X., Khoshgoftaar, T.M. and Greiner, R. (2008) ‘Using imputation techniques to help learn

accurate classifiers’, The 20th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Dayton, Ohio, USA, November.

Su, X., Khoshgoftaar, T.M. and Zhu, X. (2008) ‘VCI predictors: voting on classifications from
imputed learning sets’, The IEEE International Conference on Information Reuse and
Integration (IRI), pp.296–301.

Witten, I.H. and Frank, E. (2005) Data Mining: Practical Machine Learning Tools and Techniques
(2nd ed.), San Francisco, CA: Morgan Kaufmann.

Zhang, Y., Zhu, X. and Wu, X. (2006) ‘Corrective classification: classifier ensembling with
corrective and diverse base learners’, Proceedings of the 6th IEEE International Conference
on Data Mining (ICDM), pp.1199–1204.

Zhang, Y., Zhu, X., Wu, X. and Bond, J.P. (2005) ‘ACE: an aggressive classifier ensemble with
error detection, correction and cleansing’, Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), pp.310–317.

 Making an accurate classifier ensemble by VCI 21

Appendix

Complete results of VCI predictors with each classifier on each incomplete dataset with
30% missing ratios
Table A1 Classification accuracies of the original classifiers

Classifiers DTable NB OneR C4.5 kNN PART SVM LR NN RF Ave

Australian 76.96 76.09 74.35 77.39 79.13 83.48 75.22 78.26 75.22 82.61 77.87
Breast 91.85 95.71 86.70 91.42 89.70 93.56 94.85 94.42 90.56 96.57 92.53
Diabetes 68.36 68.36 68.36 67.97 58.20 65.63 69.53 69.53 65.63 67.97 66.95
Heart 68.89 88.89 66.67 81.11 73.33 81.11 87.78 87.78 81.11 82.22 79.89
Letter 34.50 54.28 12.76 55.14 7.140 57.62 51.68 49.66 45.66 73.10 44.15
Pima 69.14 75.00 72.66 71.09 58.20 68.36 76.17 77.73 67.19 75.39 71.09
Satimage 68.72 78.23 45.92 80.19 51.52 82.89 81.49 80.84 83.08 84.80 73.77
Segment 74.94 79.22 47.79 85.58 81.82 87.14 77.79 78.70 74.81 92.08 77.99
Vehicle 52.84 39.36 41.84 60.28 24.11 60.64 53.19 56.03 48.58 70.57 50.74
Waveform 57.28 78.32 46.23 69.17 52.91 70.77 79.13 77.38 75.32 76.45 68.30
Average 66.35 73.35 56.33 73.93 57.61 75.12 74.68 75.03 70.72 80.18 70.33

Table A2 Classification accuracies of the bagging predictors

Bagging DTable NB OneR C4.5 kNN PART SVM LR NN RF Ave

Australian 80.00 75.22 74.35 84.35 76.09 85.22 75.65 78.26 77.83 82.61 78.96
Breast 92.70 95.71 87.12 95.28 87.12 97.00 95.28 94.42 93.99 96.14 93.48
Diabetes 65.63 67.97 67.58 66.41 57.03 67.97 69.14 69.14 67.58 68.36 66.68
Heart 71.11 88.89 72.22 82.22 70.00 85.56 86.67 85.56 82.22 84.44 80.89
Letter 28.42 54.86 15.48 66.40 8.700 69.10 53.60 50.12 58.38 72.32 47.74
Pima 65.63 75.78 73.83 71.09 55.86 75.39 76.17 77.73 73.83 76.17 72.15
Satimage 71.19 78.09 46.20 81.96 23.36 84.99 81.72 81.07 84.20 84.85 71.76
Segment 84.29 79.61 59.22 88.44 36.10 90.26 78.57 NA 78.57 92.99 76.45
Vehicle 33.69 41.13 43.26 65.25 25.89 67.02 52.13 55.67 53.90 69.50 50.74
Waveform 60.91 78.53 51.64 74.85 43.64 76.32 79.23 77.23 77.23 77.09 69.67
Average 65.36 73.58 59.09 77.63 48.38 79.88 74.82 74.36 74.77 80.45 70.83

 22 X. Su, T.M. Khoshgoftaar and R. Greiner

Table A3 Classification accuracies of the VCI predictors using BMI

VCI-BMI dTable NB OneR C4.5 kNN PART SVM LR NN RF Ave

Australian 79.57 78.26 79.57 81.30 81.74 81.74 79.13 81.74 81.30 82.61 80.70
Breast 95.28 93.99 92.27 95.71 95.28 96.57 95.71 95.28 95.71 96.14 95.19
Diabetes 71.88 68.75 72.66 73.83 66.80 71.88 69.14 68.36 67.97 71.88 70.32
Heart 85.56 88.89 77.78 83.33 87.78 85.56 86.67 86.67 82.22 86.67 85.11
Letter 45.88 48.72 15.88 67.84 72.18 69.14 58.80 55.76 64.02 74.36 57.26
Pima 74.61 75.39 75.39 76.95 74.61 75.39 78.13 77.73 74.61 76.17 75.90
Satimage 84.06 78.41 56.60 88.3 89.79 89.23 84.57 88.18 88.81 90.12 83.81
Segment 84.55 75.58 64.68 88.83 88.96 90.39 95.58 86.33 88.18 90.26 85.33
Vehicle 62.77 38.65 51.77 69.50 67.38 73.40 65.60 66.31 75.89 68.44 63.97
Waveform 76.89 78.85 57.81 78.17 79.38 79.72 81.85 79.36 79.89 80.91 77.28
Average 76.11 72.55 64.44 80.38 80.39 81.3 79.52 78.57 79.86 81.76 77.49

Table A4 Classification accuracies of the VCI predictors using EM

VCI-EM dTable NB OneR C4.5 kNN PART SVM LR NN RF Ave

Australian 81.30 76.96 80.43 81.74 81.74 82.61 80.43 80.87 82.17 80.87 80.91
Breast 94.42 94.85 93.99 96.14 95.28 95.28 95.71 95.71 95.28 96.14 95.28
Diabetes 70.70 69.92 74.22 70.70 68.36 73.44 69.14 68.75 66.80 71.09 70.27
Heart 85.56 88.89 78.89 85.56 86.67 83.33 85.56 85.56 82.22 85.56 84.78
Letter 46.62 48.66 14.36 64.36 71.10 68.44 59.12 55.14 63.36 72.28 56.34
Pima 73.83 75.00 73.83 72.66 75.00 76.56 78.91 77.34 75.78 76.56 75.55
Satimage 83.45 78.41 56.88 88.16 89.79 88.72 84.80 83.31 88.81 90.30 83.26
Segment 82.73 76.1 63.90 87.53 88.31 86.88 85.19 87.40 85.97 89.09 83.31
Vehicle 62.41 37.94 47.52 71.99 67.02 71.63 65.96 68.44 75.53 69.86 63.83
Waveform 76.17 78.64 55.49 78.53 79.26 80.21 82.04 79.62 80.13 81.55 77.16
Average 75.72 72.54 63.95 80.74 80.25 80.71 78.69 78.21 79.61 81.33 77.17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

