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Abstract: Ensemble methods often produce effective classifiers by learning 
a set of base classifiers from a diverse collection of the training sets. In this 
paper, we present a system, voting on classifications from imputed learning sets 
(VCI), that produces those diverse training sets by randomly removing a small 
percentage of attribute values from the original training set, and then using an 
imputation technique to replace those values. VCI then runs a learning 
algorithm on each of these imputed training sets to produce a set of base 
classifiers. Later, the final prediction on a novel instance is the plurality 
classification produced by these classifiers. We investigate various imputation 
techniques here, including the state-of-the-art Bayesian multiple imputation 
(BMI) and expectation maximisation (EM). Our empirical results show that 
VCI predictors, especially those using BMI and EM as imputers, significantly 
improve the classification accuracy over conventional classifiers, especially on 
datasets that are originally incomplete; moreover VCI significantly outperforms 
bagging predictors and imputation-helped machine learners. 
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1 Introduction 

Ensemble techniques can generally produce fairly accurate classifiers. Most, including 
bagging (Breiman, 1996) and boosting (Freund and Schapire, 1997), first learn classifiers 
from diverse training sets and then (at performance time) combine their responses for 
each test instance. 

In this work, we propose injecting diversities into the training set by randomly 
removing observed values multiple times to produce n different incomplete learning sets. 
We then use an imputation technique to fill in the missing values to produce n different 
imputed (completed) training sets, then apply some base learner to each of the imputed 
training sets to produce n different classifiers. For predicting novel test cases, each of 
these classifiers returns a classification label for an instance; our system returns the most 
frequent label as the final classification. 

As removing attribute values from the training data is clearly removing information, 
we expect the resulting learned classifier to make more mistakes. This does, however, 
make the various base classifiers more diverse; existing research in ensemble methods 
has shown that this diversity is critical (Kuncheva and Whitaker, 2003). Moreover, our 
experimental results suggest that the predictive accuracy of each base classifier, trained 
from an incomplete dataset produced by removing a small number of attribute values, is 
often close to, or even occasionally better than, the classifiers trained from the original 
dataset. The ensemble classifier, formed from these classifiers, is often more accurate 
than just applying a standard learner to the original data (Su et al., 2008). 
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For learning from incomplete data, we previously investigated the performance  
of imputation-helped machine learners, which first preprocess incomplete data using 
state-of-the-art imputation techniques (including Bayesian multiple imputation (BMI); 
(Rubin, 1987) and expectation maximisation (EM); (Dempster et al., 1977)) to fill in 
missing values, before giving the completed data to a conventional machine learning 
algorithm (Su et al., 2008). Our empirical results show that EM- and BMI-imputed 
machine learners generally outperform both the original classifiers and also classifiers 
that use other imputers, such as the mean imputer and the linear regression (LinR) 
imputer. 

In this paper, we attempt to further improve the classification accuracy over 
conventional machine learners (especially on initially incomplete datasets) by increasing 
the diversity of the learning sets. A common approach to building diverse learners is to 
inject randomness into the training data, then run an base learner on each learning set to 
produce a set of classifier; the plurality vote over the labels produced by these classifiers 
is typically better than one learned over the original dataset (Melville and Mooney, 2004; 
Zhang et al., 2006). Common methods for injecting randomness include using bootstrap 
aggregation (bagging predictors) (Breiman, 1996), using randomly selected features, 
using randomly selected instances (Melville and Mooney, 2004) and applying aggressive 
correction on the suspicious attribute values (Zhang et al., 2005). Motivated by these 
results, we propose a system, voting on classifications from imputed learning sets (VCI), 
that injects randomness into the data by randomly ‘removing then imputing’ values – that 
is, forming several new datasets, each by first removing some given attribute values, then 
imputing values to complete each incomplete dataset. We expect that this VCI approach 
will produce classifiers that will outperform both conventional machine learners that deal 
with incomplete data using simple approaches, and bagging predictors that build diverse 
base learners only through bootstrap aggregation. 

Our VCI system is parameterised by both the imputation technique I(.) and the base 
learner L: X → Y it uses (as well as some other parameters – for example, the percentage 
of data removed, the number of base classifiers learned, etc.). Here, we consider a wide 
range of conventional machine learning algorithms L (from WEKA (Witten and Frank, 
2005), see Section 2.3), including decision tree (C4.5), decision table (dTable), k nearest 
neighbour (kNN), logistic regression (LR), naïve Bayes (NB), neural networks (NN), 
one rule (OneR), decision list (PART), support vector machine (SVM) and random forest 
(RF). We consider several imputation techniques I(.), including the baseline mean 
imputation (MEI) and the state-of-the-art imputation techniques BMI and EM 
(see Section 2.4). 

We evaluate these VCI(L, I(.)) systems on ten complete datasets from UCI machine 
learning repository (Blake and Merz, 2000), and an incomplete datasets that were 
generated by artificially deleting attribute values from the complete datasets ‘completely 
at random’ – that is ‘missing completely at random’ – that is ‘MCAR’ in that the 
missingness does not depend on the observed data.  

Section 2 presents the foundations of this work: summarising first ensemble methods, 
our VCI system and then its components: the base machine learners L and the imputation 
techniques I(.). Section 3 provides experimental design and results. 



   

 

   

   
 

   

   

 

   

   4 X. Su, T.M. Khoshgoftaar and R. Greiner    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 Foundations 

Our VCI is an ensemble system, which uses a base machine learning algorithm to learn 
multiple classifiers on each of the imputed learning sets (with missing values filled in 
using an imputation technique), then at performance time, votes for the final 
classification from the multiple classifiers. This section first overviews ensemble 
methods in general (Section 2.1); then introduces our specific ensemble method VCI 
(Section 2.2). VCI uses some base learner L; Section 2.3 summarises ten such learners. 
VCI also uses an imputation technique; Section 2.4 presents five such techniques 
I(.): MEI, BMI, LinR imputation, EM imputation and predictive mean matching (PMM). 

2.1 Ensemble classifiers 

An ensemble classifier learns a set of classifiers instead of learning a single classifier, and 
then combines the predictions of these classifiers to produce the final prediction. The key 
step of an ensemble classifier is forming an ensemble of diverse classifiers from a single 
training set. 

The well-known bagging predictor (Breiman, 1996) draws bootstrap samples as 
multiple learning sets from the single training dataset, and learns a classifier for each of 
the learning sets; at performance time, it runs all of these classifiers on a novel instance, 
then returns the class that receives the highest number of votes. Another famous 
ensemble approach, boosting (Freund and Schapire, 1997), trains the kth classifier by 
focuses on training examples misclassified by the earlier k−1 classifiers; at performance 
time, it runs all of these classifiers on a novel instance then returns a combination of their 
results with a weighting based on their respective classification errors. Other approaches 
form an ensemble of classifiers by modifying the learning task through pairwise 
classification or round robin learning; or by exploiting the algorithm characteristics, such 
as using randomised algorithms or using multiple algorithms with different characteristics 
(Melville and Mooney, 2004). 

2.2 Our VCI ensemble system 

At training time, our VCI system first deletes m% of the observed values in the 
underlying incomplete dataset (that is missing k% of its values; note k = 0 corresponds to 
complete data) completely at random (i.e. flipping a k% coin, independently for each 
attribute value), to create n incomplete learning sets (resulting in (k + m)% missing data; 
note that this will remove the values of different instance/feature pairs for different 
learning sets); VCI then produces n classifiers, one from each diminished dataset. For 
each, it uses some imputation technique I(.), such as the MEI, EM or BMI to impute 
values. It then uses a machine learner L, for example SVM or kNN, to learn classifiers 
from the imputed datasets. Later, to classify a new instance x, VCI gives x to each base 
classifier to produce a set of n labels; VCI then returns the most frequent of the labels 
(see Figure 1). 
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Figure 1 Framework of VCI predictors (see online version for colours) 

 

Note: Given an initial dataset (missing k% of the values), randomly generate n 
incomplete datasets by removing m% of the observed values n times; impute the 
missing values to generate n (slightly different) training sets, and then learn a 
classifier on each imputed dataset. To subsequently classify a new instance, have 
each classifier produce its classification, then return the most frequent 
classification. 

2.3 Machine learning algorithms used 

In general, a learning algorithm takes as input a set of labelled instances and returns a 
classifier; that classifier in turn takes as input an unlabelled instance and returns a single 
label. Here, we consider the following ten algorithms L from WEKA (Witten and Frank, 
2005). While each algorithm will see only complete (imputed) training instances within 
VCI(L, I(.)), the VCI(L, default) system will run L on incomplete data, using L’s default 
approach to dealing with incomplete data. We therefore summarise the base machine 
learning algorithms and how each of them handles incomplete data, below. 

2.3.1 Decision table 

Decision table (dTable) is a set of schema/body pairs, where each schema is a set of 
attributes, and a body consists of labelled instances from the space defined by the features 
in the schema (Kohavi, 1995). Given an unlabelled instance, the dTable classifier 
searches for exact matches in the decision table only using the features in the schema. If 
it finds no such matching instances, it then returns the majority class; otherwise, it returns 
the majority class of all matching instances. DTable ignores missing values during the 
learning and classification processes. 

2.3.2 Decision tree 

Decision tree (C4.5) grows decision trees from the root downward, greedily selecting the 
next attribute for each new decision branch added to the tree. Its various decisions, such 
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as which attribute to select and whether to stop, are based on information gain. Here, the 
C4.5 algorithm just ignores missing values. It classifies an instance by following the tree 
from the root to a leaf. If an instance reaches a node labelled with a feature that is 
missing, the decision will descend down all branches, but with a probability based on the 
percentage of training instances that went down that branch (Quinlan, 1993). The final 
classification will be the most likely outcome, based on the summed likelihood. 

2.3.3 Decision list 

PART is a decision list classifier based on partial decision trees (does not do optimisation 
as decision tree does), which combines C4.5 and the RIPPER rule classifier  
(Cohen, 1995) for rule generation by creating rules from decision trees and the  
separate-and-conquer rule learning technique. PART deals with missing values using the 
same strategy as C4.5 (Frank and Witten, 1998). 

2.3.4 Naïve Bayes 

NB is a simple Bayesian network that assumes attribute values are conditionally 
independent given the class. It typically assumes that numeric attributes obey a Gaussian 
distribution (John and Langley, 1995). NB learns by estimating the prior probability of 
each class and the conditional distributions of each attribute given the class. It simply 
ignores attribute values that are missing during both learning and classifying. 

2.3.5 Logistic regression 

LR uses a multinomial LR model with a ridge estimator, and uses a 
ReplaceMissingValuesFilter to replace the missing values with the mean (for numeric 
attributes) or the most frequent value (for nominal attributes) (Le Cessie and van 
Houwelingen, 1992) during the training stage. 

2.3.6 Random forest 

RF grows many classification trees and uses a voting scheme to determine the final 
classifications. To classify a new instance, it first asks each tree in the forest for its 
classification, and then takes the classification having the most votes. The RF learner 
replaces the missing values with the median value for numeric attributes or the most 
frequent value for nominal attributes. RF fills in the missing data in test set using filled-in 
values from the training set (Breiman, 2001). 

2.3.7 One rule 

OneR is a rule-based classifier that infers one rule that predicts the class based on the 
most informative attribute. Each attribute is assumed to be discrete, otherwise it must be 
discretised. Missing values are treated as a new value, ‘missing’ (Holte, 1993). 

2.3.8 Support vector machine 

A kernel-based SVM produces non-linear boundaries by constructing a linear boundary 
in a large, transformed (kernelised) version of the feature space. The SVM 
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implementation in WEKA uses the sequential minimal optimisation (SMO) algorithm 
(Platt, 1998) for training a support vector classifier using polynomial (which we used) or 
RBF kernels. This implementation globally replaces all missing values by a default value, 
for example ‘unknown’. 

2.3.9 K nearest neighbour 

A kNN classifier finds the k labelled instances in the training data (‘neighbours’) that are 
nearest to the given unlabelled instance, and returns the average value of the real-valued 
labels of the neighbours, and the most frequent label for nominal ones. The distance of 
the neighbours is defined in terms of Euclidean distance for continuous attributes and 
Hamming distance for discrete ones. KNN handles missing values by means of a minor 
change in the distance measure: when the two instances each miss the values of the same 
attribute, the distance on that attribute is zero, but when only one has a missing value, a 
maximal distance is assigned (Witten and Frank, 2005). 

2.3.10 Neural network 

A NN is composed of interconnected input/output units, where each connection has an 
associated weight, typically learned by the backpropagation algorithm. Many NN models 
have been modified to handle missing data. Following (Ishibuchi et al., 1993), we replace 
each missing value by an interval that includes all of the possible values on that attribute 
(e.g. a unit interval [0, 1]), and also replace each observed value by a degenerate interval 
(e.g. 0.7 transformed to [0.7, 0.7]), before applying the backpropagation algorithm. 
Learning and making classification from incomplete data are therefore turned to 
classification of the (complete) interval vectors. 

2.4 Imputation methods used 

After removing a small percentage of attribute values, VCI uses some imputation 
techniques to fill in the missing information. This subsection summarises five such 
imputers. 

2.4.1 Mean imputation 

MEI fills in each missing value with the mean of the values observed values for the 
corresponding attribute, 

MEI ,( )

1
| ( ) | u iu U i

Y
U i

θ
∈

= ∑  (1) 

where each instance u ∈ U(i) has an observed values of attribute i. Many machine 
learning algorithms use MEI as it is an extremely simple imputation technique. 
Unfortunately, it is problematic as it can distort the shape of distributions by creating a 
spiked distribution at the mean in frequency distributions, which attenuates the 
correlation of the associated item with others; and it also reduces (underestimates) the 
variance of the predictions which generally leads to incorrect inferences. 
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2.4.2 Bayesian multiple imputation 

Standard single imputation produces a single imputed dataset where each missing value is 
replaced with a single value. While this approach can be applied to virtually any dataset, 
single imputation does not account for the uncertainty about the predictions of the 
imputed values; this can lead to statistically invalid inferences (Rubin, 1987). By 
contrast, multiple imputation (MI) produces many different imputed datasets. For 
example, consider imputing a value in the (2, 1) position in the left 5 x 3 table in Figure 2 
(here the entry (i, j) is the value of the jth feature of the ith instance Ri). Here, we could 
produce m = 4 different completed datasets, shown as the middle column of four tables in 
that figure; note the proposed values for this (2, 1) entry are {1, 1, 3, 3}. BMI uses the 
average of these four values (here, 2) as the final prediction – see the right 5 x 3 table in 
the figure. In many situations, MI approaches have proven to be highly effective even for 
small values of m – say 3–15 (Rubin, 1987). 

BMI follows a Bayesian framework: it specifies a parametric model for the complete 
data, with a given a priori distribution over the unknown model parameters θ, then 
simulates m independent draws from the conditional distribution of the missing data 
given the observed data. While BMI assumes a multivariate normal distribution when 
generating the imputations for missing values, it is robust to non-normally distributed 
data (Schafer, 1997). In non-trivial applications, special computational processes, like 
Markov chain Monte Carlo (MCMC), must be applied to perform BMI (Rubin, 1987).  

BMI imputes data as follows (Rubin, 1987): Let P(Ycom|θ) model the complete data 
based on the parameter θ (which here is the mean and covariance matrix that 
parameterises a normal distribution). If Y = (Yobs, Ymiss) follows a parametric model 
P(Y|θ) where θ has the prior distribution P(θ), then the posterior predictive distribution 
for Ymiss is  

( ) ( ) ( )miss obs miss obs obs| | , | dP Y Y P Y Y P Yθ θ θ= ∫  (2) 

Figure 2 An example of BMI with m = 4 

 

Note: Each value in the shaded cells is an imputed value. BMI produces different 
imputed datasets (the middle tables) and takes the average of the m predictions as 
the final imputed dataset (the right table). 
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Equation (2) suggests that BMI can be drawn by iterating the following process for 
j = 1, …, n:  

1 generate missing values Ymiss
(j+1) from P(Ymiss|Yobs, θ (j)) 

2 draw parameters fromθ (j+1) from P(θ|Yobs, Ymiss
(j+1)). 

Repeat these two steps to generate the Markov chain {Ymiss
(1), θ (1), Ymiss

(2), θ (2), …, Ymiss
(j), 

θ (j), …}; note that Ymiss
(j+1) depends on θ (j) and θ (j) depends on Ymiss

(j). This entire process 
is repeated until the distribution P(Ymiss, θ |Yobs) is stabilised (Schafer, 1997). 

After producing m sets of filled-in values, BMI takes the average as the final imputed 
values,  

1

1 m

i
im

θ θ
∧

=

= ∑  (3) 

where îθ  is the imputation in the ith set of imputed values. 
We round the BMI imputed values to the nearest integers for integer attributes. We 

also find the observed value range [min, max] for each attribute, and replace imputed 
values < min with min, and those > max with max for missing values. We also apply this 
post-processing procedure to the other imputers described below. 

2.4.3 Linear regression imputation 

LinR imputation predicts the missing value of one attribute based on the observed 
values of other attributes. In general, given a one-dimensional vector of inputs 
X = (X1, X2, …, Xp), LinR estimates the dependent value Y based on the LinR model  

0
1

p

j j
j

Y Xβ β ε
=

= + +∑  (4) 

where the residual ε is a random variable with mean zero, and the coefficients β0 and 
β = (β1, β2, …, βp)T are trained on the existing values to minimise the L2 norm (square 
root of the sum of the squares of the residuals) (Spaeth, 1991). Here, Y is the missing 
feature value to be imputed and each Xj is the value of an observed feature of the same 
instance. 

To illustrate, consider again the simplified example in the upper left table of Figure 2, 
which corresponds to five instances, each involving three features. To estimate r(2, 1), 
notice the instance R2 has observed values for attributes A2 and A3. The LinR imputer 
would first find all other instances that have observed values for these attributes, and also 
A1 (the attribute we want to predict a value for); this identifies instances R(A1, A2, 
A3) = {R1, R4, R5}. LinR then seeks coefficients β0, β2 and β3 such that r(Ri, 
A1) = β0 + β2r(Ri, A2)+β3r(Ri, A3). Using this data subset {r(Uj, Ik)|j ∈ {1, 4, 5}, k ∈ {1, 
2, 3}}, the best-fit line has β0 = −1, β2 = 0 and β3 = 1. LinR now computes its prediction 
for r(R2, A1) = β0 + β2r2, 2 + β3r2, 3 = 2. Here, there were three equations (for R1, R4, R5) 
and three unknowns {β0, β2, β3} which produces this unique solution. In other situations, 
there might be more equations than unknowns; here, we use standard linear least square 
estimate (Spaeth, 1992). 
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2.4.4 Expectation maximisation imputation 

EM seeks maximum likelihood estimates of parameters in probabilistic models in the 
presence of latent variables (Dempster et al., 1977). EM imputation requires specifying a 
joint probability distribution for the feature value to be imputed and other feature values. 
EM iterates between performing an expectation E-step, which calculates an expected 
value of the complete data likelihood, given the observed data and the current parameters; 
and a maximisation M-step, which computes values of the parameters that maximise the 
expected likelihood over the data including those estimated in the E-step. The parameters 
found on the M-step are then used to begin another E-step, and the process is repeated 
until it converges to a stationary point. 

Our implementation of the EM algorithm, like BMI, assumes the data follows a 
multivariate Gaussian distribution (parameterised by the mean and the covariance 
matrix), and uses a ridge regression (Schneider, 2001). It first produces an initial guess of 
these parameters. In each subsequent iteration, EM updates its estimates of the mean and 
the covariance matrix in the following two steps (Schneider, 2001):  

1 E-step: replace the missing values in an instance with their conditional expectation 
values given the observed values using the estimated mean and covariance matrix. 

2 M-step: re-estimate the mean and the covariance, using the instance mean of the 
completed dataset and the covariance matrix as the sum of the instance covariance 
matrix of the completed dataset and the contributions from the conditional 
covariance matrix of the imputation errors. 

EM iterates these steps until the imputed values and the estimates of the mean and 
covariance stop changing (Little and Rubin, 1987). 

2.4.5 Predictive mean matching imputation 

PMM (Landerman et al., 1997) imputes the missing values Ymiss, i of an incomplete 
instance (recipient) Yi, based on the observed part of that instance Yobs, i using a distance 
function (Equation (6)) that is computed as the expected values of the missing variables 
conditioned on the observed covariates, instead of directly on the values of the covariates. 
Our version of PMM works as follows:  

1 Use the EM algorithm (Dempster et al., 1977) to estimate the parameters θ of a 
multivariate Gaussian distribution over the attribute values using all the available 
data. 

2 Based on these estimates, compute the conditional expected value for the missing 
part Ymiss, i of instance Yi conditioned on the observed part Yobs, i based on the 
estimated parameters θ 

( )miss, obs,| ,i ii E Y Yμ θ
∧

= . (5) 

3 Each recipient Yi is matched to the instance (possible donor) Yj = argminj d(i, j) that 
has the nearest predictive mean with respect to the Mahalanobis distance, 

( ) ( )
miss, obs,

T 1

|
ˆ ˆ ˆ ˆ( , )

i i
i j i jY Y

d i j Sμ μ μ μ
−

= − −  (6) 
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where 
miss, obs,

1

|i iY YS −  is the residual covariance matrix from the regression of the missing 

items on the observed ones (Landerman et al., 1997). 

4 Impute missing values in each recipient using the corresponding values from its 
closest donor. 

In the example in the upper left table of Figure 2, PMM first uses EM to estimate the 
values of each missing instance – for example, for the incomplete instance (recipient) Y2, 
PMM computes the predictions of the missing feature values, Ymiss, 2 = {r(2, 1)}, 
conditioned on the observed feature values Yobs, 2 = {r(2, 2), r(2, 3)} = {4, 3}, of the 
entire row associated with the instance Y2. The same predictive means are computed for 
all the possible donors Yj, that is, Yj = {r(j, 1), r(j, 2), r(j, 3)} where this j varies over all 
instances except the recipient Y2. The recipient Y2 is then matched to the donor that has 
the closest predictive mean in terms of the Mahalanobis distance, which here is 
Y1 = {r(1, 1), r(1, 2), r(1, 3)}; hence the missing value r(2, 1) is imputed by taking the 
corresponding value r(1, 1) = 2 from Y1. 

3 Experimental design and results 

3.1 Preliminary experiments on imputation techniques 

Before applying the imputation techniques into VCI predictors, we first investigated 
the effectiveness of the imputers, including MEI, BMI, LinR, PMM and EM. We work 
on the UCI machine learning repository dataset ‘letter’, which has 20,000 samples and 
16 attributes, each of which ranges over the values {0, 1, 2, …, 15}. We randomly 
remove values from the dataset to generate eight datasets, with missing ratios of 10%, 
20%, …, 80%. By applying the imputation techniques, we compare the imputed values 
with the ground truth, and calculate the respective root mean square error (RMSE) of 
these imputed values on this specific dataset. 

( )2, ,{ , }

1RMSE u i u iu i
p r

n
= −∑  (7) 

where n is the total number of estimated values by an imputer, pu, i is the imputed value 
for instance u on attribute i and ru,i is the ground truth value. 

Table 1 and Figure 3 show that EM and BMI perform the best on this dataset. MEI 
has almost stable accuracy on datasets with different missing ratios (it is therefore 
relatively worse for dense datasets and relatively better for sparse ones), and the other 
two imputation techniques, PMM and LinR, fall far behind. 

Although second to the EM imputer, the BMI imputer is robust to datasets with 
missing ratio higher than 50%, for which EM often fails to produce imputations due to an 
eigenvalue calculation exception (this is why Figure 3 includes only the EM results for 
datasets with missing ratios at most 50%). 
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Table 1 The RMSE performance of the imputation techniques on the dataset ‘letter’ with 
different missing ratios 

Ratio% BMI EM PMM LinR MEI 

10 1.7017 1.5089 2.2699 2.2653 2.3249 
20 1.7516 1.6557 2.3627 2.3580 2.3346 
30 1.8066 1.7090 2.4194 2.4115 2.3297 
40 1.8637 1.7677 2.5147 2.5057 2.3264 
50 1.9325 1.8203 2.5992 2.5916 2.3339 
60 2.0042 NA 2.7114 2.7127 2.3292 
70 2.1008 NA 2.8481 2.8451 2.3293 
80 2.2424 NA 2.9941 2.9905 2.3301 

Figure 3 The RMSE performance of the imputation techniques on the dataset ‘letter’ with 
different missing ratios (see online version for colours) 

 

BMI is also very efficient, requiring only about 5 min to impute the dataset ‘letter’ (on 
our computer with a 3.2 GHz Intel CPU and 4 GB RAM) at the missing ratio of 50%. 
However, PMM and EM require more than 20 min each using the same machine. 

Based on the above preliminary experiments, we dropped the imputation techniques 
PMM and LinR from further experiments. 

3.2 Experimental design 

We apply our proposed VCI(L, I(.)) system using the I(.) ∈ {MEI, BMI, EM} imputation 
techniques. We investigated VCI predictors on both complete datasets and incomplete 
datasets. 

We worked on ten datasets with numeric or ordinal attributes from the UCI machine 
learning repository (Blake and Merz, 2000; see Table 2) (We focus on this class of data 
as each of these imputers only deals with numeric and ordinal data, but not categorical 
data). We applied each of the ten base learners L introduced in Section 2.3, in general, 
using the default parameters given by WEKA. We used 50 trees for the RF classifier and 
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used k =5 as the number of neighbours for the kNN classifier, which produced optimal 
performance in our preliminary experiments. When implementing our proposed imputers, 
BMI and EM iterate until they converge. For example, on the dataset ‘letter’ with 30% 
missing ratio, BMI needs nine iterations to converge while EM needs six. When 
preprocessing the incomplete data with an imputer, we impute the training and test sets 
together. Notice, none of the imputers use the class labels of the test sets. (Our empirical 
results show that classifying on the imputed test data (excluding class labels) slightly but 
insignificantly outperforms classifying on the original incomplete test data.) 

We used the standard training and test splits for each of these UCI datasets: 2/3 of the 
instances for training and 1/3 for testing, except the dataset ‘letter’, where we used a 3/4 
to 1/4 split, and the dataset ‘waveform’, where we trained on 300 instances and tested 
on 4,700. 

How many learning sets should VCI produce for each dataset? We know that small 
numbers may incur high biases and large numbers will increase computational expense. 
We want an odd number in order to break ties in voting, especially for binary class 
datasets. Therefore, we focussed on 7 ~ 11 and decided to use n = 9. To compare, we also 
use n = 9 bootstrap learning sets for the bagging predictors, which performs similarly to 
the WEKA default setting of n = 10. We formed each such learning dataset by randomly 
removing 3% of the attribute values (see the discussion in Section 3.4). 
Table 2 Description of the datasets used in our experiments 

Datasets #Train #Test #Attribute #Class 

Australian 460 230 14 2 
Breast-wisc 466 233 10 2 
Diabetes 512 256 8 2 
Heart 180 90 13 2 
Letter 15,000 5,000 16 26 
Pima 512 256 8 2 
Satimage 4,290 2,145 36 6 
Segment 1,540 770 19 7 
Vehicle 564 282 18 4 
Waveform 300 4,700 21 3 

3.3 VCI predictors on complete datasets 

We first investigate VCI predictors on complete data (i.e. the special case of ‘incomplete 
data’ with missing ratio of 0%) on the ten datasets described in Table 2. 

Table 3 and Figure 4 show the classification accuracy of VCI(L, …) predictors as well 
as the original classifier L and bagging, over all ten complete datasets. We see that VCI 
improves average classification accuracy over the base classifiers L except NB, RF and 
LR. Over all base learners L, VCI(L, EM) and VCI(L, BMI) perform significantly better 
than the original learners L with one-sided t-test p < 0.01 and p < 0.008, respectively. 
VCI(L, EM) insignificantly outperforms bagging predictors with p < 0.1. Other VCI 
predictors also outperform the original classifiers, and perform slightly better than or 
equivalent to bagging predictors. 
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Table 3 Average classification accuracy of VCI predictors over ten UCI complete datasets 

Base learners Original classifiers Bagging VCI default VCI MEI VCI EM VCI BMI 

OneR 67.10 68.10 68.50 68.39 68.56 68.50 
NB 76.97 76.79 76.31 75.99 76.10 76.03 
DTable 81.14 82.84 82.01 82.63 82.91 82.27 
C4.5 85.19 86.83 87.10 86.90 86.76 86.89 
KNN 85.76 84.64 85.93 86.35 86.76 86.58 
PART 84.98 86.45 87.76 86.98 87.43 86.98 
SVM 84.41 85.59 84.54 84.69 84.94 85.31 
LR 85.70 85.73 85.70 85.67 85.63 85.99 
NN 85.35 86.92 86.29 87.13 87.32 86.50 
RF 88.11 87.12 87.56 87.51 87.90 87.93 
Average 82.47 83.10 83.17 83.22 83.43 83.30 

Figure 4 Average classification accuracy of VCI predictors over ten UCI complete datasets  
(see online version for colours) 

 

Note that VCI(L, default), which uses each L’s default method to deal with missing 
values (described in Section 2.2), significantly outperforms original classifiers L with 
p < 0.037. 



   

 

   

   
 

   

   

 

   

    Making an accurate classifier ensemble by VCI 15    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.4 VCI predictors on incomplete datasets 

We have shown that VCI works on complete data; now, we experiment to see if it also 
works on incomplete data. 

We first present our results on incomplete datasets generated from the complete 
datasets (see Table 2) by randomly deleting 30% of the observed values. We then report 
results on the dataset ‘waveform’, with missing ratios of 10%, 20%, …, 50% to 
investigate performance of VCI predictors on incomplete data with different missing 
ratios. We finally explore the effects of the injected missing ratio m% on the predictive 
accuracy of VCI predictors. 

From Table 4 and Figure 5 (see Appendix for more detailed results of VCI predictors 
with each base learner L on every dataset), we found VCI(L, BMI) and VCI(L, EM) 
significantly outperform original learners L by 10.2% and 9.7% higher average 
classification accuracy (with p < 0.0032 and p < 0.0042, respectively); VCI(L, BMI) and 
VCI(L, EM) perform significantly better than bagging predictors with 9.4% and 9.0% 
higher average classification accuracy (with p < 0.026 and p < 0.032, respectively). To 
compare, we also implemented imputation-helped learners (machine learners that learn 
classifiers on imputed training data instead of originally incomplete data) (Su et al., 
2008), and found VCI(L, BMI) outperforms BMI-imputed machine learners (imputation-
helped learners using BMI as the preprocessor for incomplete data) with 3.0% higher 
average classification accuracy (p < 0.00065); VCI(L, EM) has 1.7% higher average 
accuracy than EM-imputed machine learners (p < 0.015). VCI(L, MEI) outperforms  
MEI-imputed machine learners with 7.2% better accuracy (p < 0.018), and it outperforms 
the original classifiers and bagging predictors with 4.5% and 3.8% better average 
classification accuracy, respectively (with p < 0.049 and p < 0.17, respectively). 

VCI(L, I(.)) predictors greatly improve classification accuracy on incomplete data for 
almost all of the respective machine learned classifiers L, we investigated in this work, 
including the stable learners kNN and RF, which regular ensemble classifiers such as 
bagging fail to improve. 

VCI using BMI and EM on kNN (VCI(kNN, BMI) and VCI(kNN, EM)) have 39.5% 
and 39.3% accuracy improvements, respectively, over the original kNN classifier. We 
believe this is due to the crude way that kNN handles missing data (see Section 2.3), and 
the observation that imputed values can be better used for distance calculation than the 
missing values. Moreover, voting on the classifications from the diverse imputed learning 
sets further improves the performance. 

On another stable learner, NB, however, VCI(NB, I(.)) predictors perform slightly 
worse. This is because NB classifies an instance by computing the class with maximum 
probability given the observed values, while imputing diverse learning sets and voting 
based on their classifications often do not provide better inference for NB. 

We investigated the performance in terms of accuracy of VCI predictors on the 
dataset ‘waveform’ with missing ratios 10–50%. Table 5 and Figure 6 show that VCI(L, 
BMI) and VCI(L, EM) dominate over their rivals, and enlarge their advantage on datasets 
with higher missing ratios. VCI(L, default) predictors (that use the default simple ways to 
handle incomplete data) and MEI-imputed machine learners perform equivalently with 
bagging predictors; and VCI(L, MEI) predictors perform better than bagging predictors. 
BMI-imputed and EM-imputed machine learners perform better than the original 
classifiers, bagging predictors and VCI(L, MEI), but inferior to VCI(L, BMI) and VCI 
(L, EM). 
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Table 4 Average classification accuracy of VCI predictors over ten UCI incomplete datasets 
with 30% missing ratios 

Base 
learners 

Original 
classifier Bagging VCI-MEI BMI-impute EM-impute VCI-EM VCI-BMI 

OneR 56.33 59.09 56.41 63.26 63.75 63.95 64.44 
NB 73.35 73.58 71.59 72.18 72.66 72.54 72.55 
DTable 66.35 65.36 71.96 72.99 74.20 75.72 76.11 
LR 75.03 74.36 74.49 76.94 78.00 78.21 78.57 
SVM 74.68 74.82 75.17 78.04 78.60 78.69 79.52 
NN 70.72 74.77 76.58 78.14 77.81 79.61 79.86 
C4.5 73.93 77.63 76.64 75.54 76.52 80.74 80.38 
kNN 57.61 48.38 74.41 78.56 79.50 80.25 80.39 
PART 75.12 79.88 77.75 76.49 76.87 80.71 81.3 
RF 80.18 80.45 80.03 80.51 81.03 81.33 81.76 
Ave 70.33 70.83 73.50 75.26 75.89 77.17 77.49 

Figure 5 Average classification accuracy of VCI predictors over ten UCI incomplete datasets 
with 30% missing ratios (see online version for colours) 
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Table 5 Average classification accuracy of VCI predictors over ten classifiers on the dataset 
‘waveform’ with missing ratios 10–50% 

Predictors 10% 20% 30% 40% 50% 

Original classifiers 72.86 71.21 68.3 66.67 63.91 
Bagging predictors 74.98 73.44 69.67 68.47 64.63 
BMI-imputed 75.37 75.22 74.88 73.51 72.03 
EM-imputed 75.56 75.51 75.81 73.31 73.69 
MEI-imputed 73.43 72.5 69.97 67.73 66.19 
VCI-BMI 77.76 77.75 77.28 76.51 74.21 
VCI-EM 77.52 77.42 77.19 75.79 74.49 
VCI-default 74.83 73.1 69.53 68.13 65.5 
VCI-MEI 75.95 75.03 71.57 70.05 68.14 

Figure 6 Average classification accuracy of VCI predictors over ten classifiers on the dataset 
‘waveform’ with missing ratios 10–50% (see online version for colours) 

 

To investigate the impact of injected missing ratios on VCI predictors, we applied 
VCI(L, EM) to the ‘waveform’ dataset that has a 30% original missing ratio, and 
additionally removed observed values with injected missing ratio m% = 1–9%. The 
results (see Figure 7) show that, for most learners L, VCI(L, EM) with injected missing 
ratios ≥ 3% perform similarly to each other (with different m%). VCI(C4.5, EM) and 
VCI(dTable, EM) have better classification accuracy with higher injected missing ratios 
over the above injected missing ratio span. As the classification accuracy of VCI 
predictors and other classifiers generally decrease with higher missing ratios, we did not 
consider an injected missing ratio ≥ 8%. We therefore recommend an injected missing 
ratio between 3% and 8%; here, we used 3%. 
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Figure 7 Impact of injected missing ratios on VCI predictors: VCI-EM on the ‘waveform’ 
dataset with 30% missing ratio and different injected missing ratios (see online version 
for colours) 

 

The computational expense for VCI predictors is imputation_time + training_time for 
preprocessing and training time, and classifying_time × number_of_learning_sets +  
voting_time for performance time. The ‘number of learning sets’ factor is standard for 
ensemble classifiers (such as bagging, boosting). Here, the extra expense is the 
imputation time. As we mentioned in Section 3.1, the imputation for the biggest dataset 
in our experiments, ‘letter’ (with 30% missing data), using BMI takes only a few 
minutes. For most mid-sized or small-sized datasets, the imputation time is ignorable. 

As missing data that are not missing at random (NMAR) are usually problem specific, 
we did not experiment on datasets with this missing mechanism. We plan to investigate 
the impact of using these imputation techniques for incomplete data that are missing at 
random (MAR, whose missingness depends on observed values but not on unobserved 
ones) in our future work. We also plan to investigate VCI predictors on categorical data 
in our future work. 

4 Conclusions 

We propose a novel ensemble approach, VCI, that produces many diverse learning sets 
by first removing observed attribute values multiple times and then imputing the resulting 
incomplete learning sets using state-of-the-art imputation techniques, such as BMI and 
EM. It then uses a base learner to learn a classifier for each imputed learning set. Our 
empirical studies show that VCI predictors (whose classification is the plurality over the 
individual classifiers) can significantly improve the classification accuracy over 
conventional classifiers, especially for incomplete datasets with high missing ratios. 
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VCI(L, BMI) (VCI using BMI as the imputer, and a base learner L) and VCI(L, EM) 
significantly outperform most of the respective machine learned classifiers L we 
investigated, including kNN, NN, OneR, decision table, SVM, LR, decision tree (C4.5), 
RF and decision list (PART). VCI predictors also have significantly better performance 
than the well-known bagging predictors and imputation-helped machine learners, and 
perform especially well for the stable process kNN where bagging fails to improve 
accuracy.  
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Appendix 

Complete results of VCI predictors with each classifier on each incomplete dataset with 
30% missing ratios 
Table A1 Classification accuracies of the original classifiers 

Classifiers DTable NB OneR C4.5 kNN PART SVM LR NN RF Ave 

Australian 76.96 76.09 74.35 77.39 79.13 83.48 75.22 78.26 75.22 82.61 77.87 
Breast 91.85 95.71 86.70 91.42 89.70 93.56 94.85 94.42 90.56 96.57 92.53 
Diabetes 68.36 68.36 68.36 67.97 58.20 65.63 69.53 69.53 65.63 67.97 66.95 
Heart 68.89 88.89 66.67 81.11 73.33 81.11 87.78 87.78 81.11 82.22 79.89 
Letter 34.50 54.28 12.76 55.14 7.140 57.62 51.68 49.66 45.66 73.10 44.15 
Pima 69.14 75.00 72.66 71.09 58.20 68.36 76.17 77.73 67.19 75.39 71.09 
Satimage 68.72 78.23 45.92 80.19 51.52 82.89 81.49 80.84 83.08 84.80 73.77 
Segment 74.94 79.22 47.79 85.58 81.82 87.14 77.79 78.70 74.81 92.08 77.99 
Vehicle 52.84 39.36 41.84 60.28 24.11 60.64 53.19 56.03 48.58 70.57 50.74 
Waveform 57.28 78.32 46.23 69.17 52.91 70.77 79.13 77.38 75.32 76.45 68.30 
Average 66.35 73.35 56.33 73.93 57.61 75.12 74.68 75.03 70.72 80.18 70.33 

 
Table A2 Classification accuracies of the bagging predictors 

Bagging DTable NB OneR C4.5 kNN PART SVM LR NN RF Ave 

Australian 80.00 75.22 74.35 84.35 76.09 85.22 75.65 78.26 77.83 82.61 78.96 
Breast 92.70 95.71 87.12 95.28 87.12 97.00 95.28 94.42 93.99 96.14 93.48 
Diabetes 65.63 67.97 67.58 66.41 57.03 67.97 69.14 69.14 67.58 68.36 66.68 
Heart 71.11 88.89 72.22 82.22 70.00 85.56 86.67 85.56 82.22 84.44 80.89 
Letter 28.42 54.86 15.48 66.40 8.700 69.10 53.60 50.12 58.38 72.32 47.74 
Pima 65.63 75.78 73.83 71.09 55.86 75.39 76.17 77.73 73.83 76.17 72.15 
Satimage 71.19 78.09 46.20 81.96 23.36 84.99 81.72 81.07 84.20 84.85 71.76 
Segment 84.29 79.61 59.22 88.44 36.10 90.26 78.57 NA 78.57 92.99 76.45 
Vehicle 33.69 41.13 43.26 65.25 25.89 67.02 52.13 55.67 53.90 69.50 50.74 
Waveform 60.91 78.53 51.64 74.85 43.64 76.32 79.23 77.23 77.23 77.09 69.67 
Average 65.36 73.58 59.09 77.63 48.38 79.88 74.82 74.36 74.77 80.45 70.83 

 

 
 
 
 
 
 
 
 



   

 

   

   
 

   

   

 

   

   22 X. Su, T.M. Khoshgoftaar and R. Greiner    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table A3 Classification accuracies of the VCI predictors using BMI  

VCI-BMI dTable NB OneR C4.5 kNN PART SVM LR NN RF Ave 

Australian 79.57 78.26 79.57 81.30 81.74 81.74 79.13 81.74 81.30 82.61 80.70 
Breast 95.28 93.99 92.27 95.71 95.28 96.57 95.71 95.28 95.71 96.14 95.19 
Diabetes 71.88 68.75 72.66 73.83 66.80 71.88 69.14 68.36 67.97 71.88 70.32 
Heart 85.56 88.89 77.78 83.33 87.78 85.56 86.67 86.67 82.22 86.67 85.11 
Letter 45.88 48.72 15.88 67.84 72.18 69.14 58.80 55.76 64.02 74.36 57.26 
Pima 74.61 75.39 75.39 76.95 74.61 75.39 78.13 77.73 74.61 76.17 75.90 
Satimage 84.06 78.41 56.60 88.3 89.79 89.23 84.57 88.18 88.81 90.12 83.81 
Segment 84.55 75.58 64.68 88.83 88.96 90.39 95.58 86.33 88.18 90.26 85.33 
Vehicle 62.77 38.65 51.77 69.50 67.38 73.40 65.60 66.31 75.89 68.44 63.97 
Waveform 76.89 78.85 57.81 78.17 79.38 79.72 81.85 79.36 79.89 80.91 77.28 
Average 76.11 72.55 64.44 80.38 80.39 81.3 79.52 78.57 79.86 81.76 77.49 

 

Table A4 Classification accuracies of the VCI predictors using EM 

VCI-EM dTable NB OneR C4.5 kNN PART SVM LR NN RF Ave 

Australian 81.30 76.96 80.43 81.74 81.74 82.61 80.43 80.87 82.17 80.87 80.91 
Breast 94.42 94.85 93.99 96.14 95.28 95.28 95.71 95.71 95.28 96.14 95.28 
Diabetes 70.70 69.92 74.22 70.70 68.36 73.44 69.14 68.75 66.80 71.09 70.27 
Heart 85.56 88.89 78.89 85.56 86.67 83.33 85.56 85.56 82.22 85.56 84.78 
Letter 46.62 48.66 14.36 64.36 71.10 68.44 59.12 55.14 63.36 72.28 56.34 
Pima 73.83 75.00 73.83 72.66 75.00 76.56 78.91 77.34 75.78 76.56 75.55 
Satimage 83.45 78.41 56.88 88.16 89.79 88.72 84.80 83.31 88.81 90.30 83.26 
Segment 82.73 76.1 63.90 87.53 88.31 86.88 85.19 87.40 85.97 89.09 83.31 
Vehicle 62.41 37.94 47.52 71.99 67.02 71.63 65.96 68.44 75.53 69.86 63.83 
Waveform 76.17 78.64 55.49 78.53 79.26 80.21 82.04 79.62 80.13 81.55 77.16 
Average 75.72 72.54 63.95 80.74 80.25 80.71 78.69 78.21 79.61 81.33 77.17 
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