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Abstract

A DNA-microarray measures the gene expression levels of thousands of genes un-

der different experimental conditions (samples). These values describe the unique

properties to each cell type. The samples may have come from different time points,

diseased or healthy tissues, or different individuals. This technology benefits bio-

logical research greatly in understanding of biological processes.

Our goal is to learn a microarray classifier to distinguish members of various

classes, based on their expression levels.

In this thesis we propose a method for sample classification by reducing the

dimensionality of the data, using bi-clusters. A bi-cluster is a subset of genes and

a subset of samples that have similar patterns based on the gene expression values.

We also propose a novel algorithm for finding bi-clusters from the microarray data,

using the best rank-1 matrix approximation. We demonstrate that our method works

effectively by comparing its prediction accuracy with other classifiers, including

another bi-clustering algorithm.
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Chapter 1

Introduction

1.1 Motivation

Biologists are using DNA-microarrays to measure the gene expression level of bi-

ological samples. Tens of thousands of genes are measured on a very small set,

usually tens to a few hundred, of samples. The samples may correspond to different

time points, different experimental conditions, different organs, diseased or healthy

tissues, or different individuals. This data is typically stored in a data matrix of real

numbers. Biologists analyze this data seeking patterns in the gene expression levels

in order to understand the expression level of the genes under different conditions.

This can help them to determine the genes involved in a disease, suggest biomarkers

of a specific disease, propose targets for drug intervention, and use microarray as a

screening tool.

Working with microarray data has several challenges. The most important one is

the size of the matrix. There are very few samples with too many features, typically

less than a hundred samples versus more than 50, 000 genes. Dealing with outliers

and missing values are other challenges.

Biologists are mainly interested in the following tasks [3]:

• Finding patterns in data (clustering) such as:
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– Finding clusters of genes according to their expression values over dif-

ferent samples, and

– Finding clusters of samples based on the expression values of genes.

• Classification

– Based on the expression values of other genes with a known class (based

on the functionality of genes), classify a new gene based on its expres-

sion value, and

– Classify a new sample with given expression value of the genes for that

sample, where the sample class depends on the study. The class can be

different time points, cancer versus normal, clinical outcome, etc.

Applying known clustering algorithms such as k-means clustering and hierar-

chical clustering to gene expression data can run into a significant difficulty. These

algorithms require the genes in the same cluster to behave similarly over all exper-

imental conditions. But many gene activation patterns are common to a group of

genes only under specific experimental conditions. In fact, based on the general

understanding of cellular processes, we expect subsets of genes to be co-regulated

and co-expressed only under certain experimental conditions, but to behave almost

independently under other conditions [3]. ”Discovering such local expression pat-

terns may be the key to uncovering many genetic pathways that are not apparent

otherwise. It is therefore highly desirable to move beyond the clustering diagram,

and to develop algorithmic approaches capable of discovering local patterns in the

microarray data.” [3]

Clustering methods can be applied to either the genes or the samples in the data

matrix, separately. Instead, bi-clustering algorithms perform clustering of genes

and samples at the same time. They identify subsets of genes that have similar

activity patterns under a specific subset of samples (finding a local model in the

data). Therefore, bi-clustering approaches are an ideal technique to use when the

following situation applies [3]:

1. Only a small set of genes participates in a cellular process of interest.
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2. An interesting cellular process is active only in a subset of the conditions.

3. A single gene may participate in multiple pathways that may or may not be

co-active under all conditions.

In this thesis we propose:

• An algorithm for finding bi-clusters from microarray data, based on the best

rank-1 matrix approximation, and

• A method for sample classification based on these bi-clusters. We call our

method RoBicC (Rank-one Bi-cluster Classifier).

We also compare the performance RoBicC with other classifiers, including ones

that use other bi-clustering algorithm. We do this by replacing the bi-clusters found

by our method with those found by other methods. Then using our sample classifi-

cation method, we classify the samples and compare the prediction accuracies.

Thesis statement: In this thesis, we demonstrate that our RoBicC system (clas-

sifier based on rank-1 bi-clusters) can effectively classify sample in microarray data.

1.2 Overview

The rest of Chapter 1 provides background information on the technology used

in microarray gene expression studies, as well as bi-clustering methods and clas-

sification tasks. Chapter 2 summarizes previous work that have been described

for bi-clustering and classifying microarrays. Chapter 3 describes the bi-clustering

problem and the structure of our algorithm for finding bi-clusters. Chapter 4 ex-

plains how we use bi-clusters to classify microarray samples. Chapter 5 describes

some of the publicly available microarray data, evaluates our bi-clustering and clas-

sification method, and compares our results with the known results for the datasets.

Finally, Chapter 6 draws conclusions and describes some future work.
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1.3 Introduction to Microarrays

In the past few years, there has been an explosion in the development of high-

throughput methods for molecular biology experiments. The appearance of the

DNA microarray technology is an example of such a high-throughput methods.

Microarray technology allows the study of tens of thousands of genes at the same

time, under different experimental conditions. This technique is proving to be a

great help for biological research and in the understanding of gene regulation and

gene interactions. These results also have very important applications in pharma-

ceutical and clinical research [8].

However, it is not easy to handle the huge amount of data generated by microar-

ray experiments. We need to use advanced data processing techniques to handle

these types of data. There are now several machine learning methods to deal with

microarray data, depending on the task [18], [19], [21], [22], [23].

One of the tasks is finding useful patterns from microarray data, e.g. find a

group of samples that has similar correlation with respect to a set of genes (bi-

clustering). We are also interested in classification tasks. For instance, based on

the microarray gene expression data, predict if a patient has cancer or not, or if a

patient will respond to a certain type of treatment or not?

1.3.1 Biology Background

A cell is the fundamental unit of life as it contains all the structures and molec-

ular constituents needed for life. Almost every cell of the body contains a full

set of genes. DNA carries the genetic information of a cell. A DNA molecule

-called a chromosome- consists of thousands of genes. Each gene contains struc-

tural information about protein sequence and regulatory information about protein

expression,as shown in Figure 1.1. Each gene codes for a protein, but in any cell

only some of these genes are expressed, and it is this expressed subset that confers

unique properties to each cell type [1].
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Figure 1.1: Cell, Chromosome, and DNA [29].

Proteins are sequences of amino-acids. Each protein has a unique sequence

of amino-acids, and this sequence specifies the shape and function of the protein.

Proteins perform most of the critical functions of cells.

Intermediate between a gene and its corresponding protein is messenger RNA

(mRNA). When a gene is activated, cellular machinery begins to copy certain seg-

ments of that gene. The resulting product is known as messenger RNA (mRNA),
which is the body’s template for creating proteins. To produce a protein from DNA,

as shown in Figure 1.2, DNA is first transcribed to mRNA, which is then translated

to protein.

“Gene expression” is the term used to describe the transcription of the infor-

mation contained within the DNA, into messenger RNA (mRNA) molecules that

are then translated into the proteins [1]. Gene expression is the process by which

a gene’s DNA sequence is converted into the structures and functions of a cell.

Transcription is the process through which the genetic information from DNA is

converted into RNA. Translation is the process through which messenger RNA

(mRNA) molecules are converted into the proteins. Microarrays are designed to

measure the concentration of mRNA.
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Figure 1.2: The route from the DNA code to the protein. “The Fundamental
Paradigm” [30].

1.3.2 Microarray Technology

A DNA-microarray is a small, solid support (usually a glass microscope slide)

onto which the sequences from thousands of different genes are immobilized, or

attached, at fixed locations. Figure 1.3 shows a microarray slide. The DNA is

printed, spotted, or actually synthesized directly onto the support [1].

There are different ways that microarrays can be used to measure gene expres-

sion levels. One of the most popular microarray applications is comparing gene ex-

pression levels under two different conditions, e.g., the same cell type in a healthy

versus a diseased state. In this type of study, the total mRNA from the cells in two

different conditions is extracted and labeled with two different fluorescent labels

(for example, green dye for healthy and red dye for diseased state). Both extracts

are washed over the microarray. This is called a 2-color microarray.

The dyes enable the amount of sample bound to a spot to be measured by the

level of fluorescence emitted when it is excited by a laser. Thus, from the fluores-
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Figure 1.3: Microarray Slide (1-color) [31].

cence intensities and colors for each spot, the relative expression levels of the genes

in both samples can be estimated. Here is the list of possible colors in a 2-color

microarray [1]:

• Green: represents Control DNA, where DNA derived from normal tissue is

hybridized to the target DNA.

• Red: represents Sample DNA, where DNA is derived from diseased tissue

hybridized to the target DNA.

• Yellow: represents a combination of Control and Sample DNA, where both

hybridized equally to the target DNA.

• Black: represents areas where neither the Control nor Sample DNA hybridized

to the target DNA.

After the hybridization step is complete, the microarray will be placed on a

scanner that uses a specific frequency of light from a laser. This will produce an

image from the scanned array. To get information about gene expression levels,

this image is analyzed using image analysis software. Each spot on the array is
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identified, its intensity is measured and compared to the background. To obtain

the final gene expression matrix from spot quantizations, all the quantities related

to some gene have to be combined and the entire matrix has to be scaled to make

different arrays comparable. This process is called “normalization”. Figure 1.4

shows these steps.

Figure 1.4: Microarray Technology [2].

The data from one sample corresponds to a n× 1 vector of real numbers, where

n can be tens of thousands. The data generated by a set of microarray experiments

can be viewed as a matrix of expression levels, organized by genes versus samples.

If we have p samples, this produces a n×p matrix of real numbers. Each column of

the matrix contains the expression levels of the n genes monitored in the microarray,

and each row contains the the expression levels of a gene as it varies over the p

samples. The next task is analyzing the data generated by a microarray.
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1.4 Bi-clustering

One of the objectives in analyzing microarray data is finding patterns in the data.

These patterns can be found with respect to the genes in the matrix or with respect

to the samples (or different conditions) in the matrix. Clustering methods can be

used to find the clusters of genes or clusters of samples in the data, separately.
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Figure 1.5: Clustering versus Bi-clustering.

Traditional clustering methods, such as hierarchical and K-means approaches,

consider the similarity of genes over all samples. They either find the clusters of

genes with similar patterns over all samples, or they find the clusters of samples

with similar pattern over all genes. But many activation patterns are common to a

group of genes only under specific experimental conditions. In fact, based on the

general understanding of cellular processes, it is expected that subsets of genes will

be co-regulated and co-expressed only under certain experimental conditions, but

to behave almost independently under other conditions [3].

Bi-clustering methods perform the clustering on genes and samples at the same

time. They find a subset of genes that have similar pattern under a specific subset

of samples.Therefore, clustering algorithms find a global model while bi-clustering

algorithms find a local model in the data [3]. Discovering such local expression
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patterns may be the key to uncovering many genetic pathways that are not visible

otherwise. It is therefore highly desirable to move beyond the clustering methods,

and to develop algorithmic approaches capable of discovering local patterns in the

microarray data; see Figure 1.5.

Bi-clustering algorithms can identify subsets of samples or experimental con-

ditions that have similar pattern over a subsets of genes. It might be the case that

some genes show different patterns for a group of samples (some genes may have

two or more functions). It means that bi-clusters may not be disjoint, i.e. they might

overlap. Clustering, in its simple form, partitions the genes into disjoint gene sets.

On the other hand, there might be some genes or samples that do not show any

pattern for any samples or genes. Therefore, each gene and each sample should be

able to be in more than one cluster or no cluster at all.

Therefore, bi-clustering approaches should find groups of genes and samples

according to the following restrictions [3]:

1. A cluster of genes should be defined with respect to only a subset of samples.

2. A cluster of samples should be defined with respect to only a subset of genes.

3. A gene or sample should be able to belong to more than one cluster or no

cluster at all.

Table 1.1 summarizes the differences between the classical clustering algo-

rithms and bi-clustering algorithms.

Clustering Algorithms Bi-clustering Algorithms
Find clusters of genes (or Find clusters of genes and
clusters of samples). clusters of samples simultaneously.
Find the clusters of genes with Find the clusters of genes with
similar patterns over all samples. similar patterns over a subset of samples.
Find the clusters of samples with Find the clusters of samples with
similar patterns over all genes. similar patterns over a subset of genes.
Find a global model. Find a local model.

Table 1.1: Comparing clustering algorithms and bi-clustering algorithms.
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Another characteristic that distinguishes different approaches to cluster analysis

is flat like K-means approaches versus hierarchical approaches [5].

The K-means algorithm process is as follows:

• The dataset is partitioned into K clusters and the data points are randomly as-

signed to the clusters resulting in clusters that have roughly the same number

of data points.

• For each data point, calculate the distance from the data point to each cluster,

based on a pre-defined distance function (e.g., euclidean distance). If the data

point is closest to its own cluster, leave it where it is. If the data point is not

closest to its own cluster, move it into the closest cluster.

• Repeat the above step until a complete pass through all the data points results

in no data point moving from one cluster to another. At this point the clusters

are stable and the clustering process ends.

K-Means clustering generates a specific number of disjoint, flat (non-hierarchical)

clusters. In this type of clusters, there are always K clusters, and there is always

at least one item in each cluster. The clusters are non-hierarchical and they do not

overlap.

A bottom-up hierarchical algorithm process is as follows (a top-down clustering

method works in a similar way but in the opposite direction):

• Assign each object to a separate cluster.

• Evaluate all pair-wise distances between clusters, where distance is a pre-

defined function.

• Construct a distance matrix using the distance values between clusters.

• Look for the pair of clusters with the shortest distance.

• Remove the pair from the matrix and merge them.

• Evaluate all distances from this new cluster to all other clusters, and update

the matrix.
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• Repeat until the distance matrix is reduced to a single element.

Hierarchical clustering (bottom-up method) generates clusters that have sub-

clusters, which in turn have sub-clusters, and so on. Gene expression data might

also have this hierarchical quality. Bottom-up hierarchical clustering starts with

every single object (gene or sample) in a single cluster. Then, in each successive

iteration, it merges the closest pair of clusters by satisfying some similarity criteria,

until all of the data is in one cluster.

With a large number of variables, K-means may be computationally faster than

hierarchical clustering (if K is small). But the number of clusters, K, is fixed in

this approach and it is difficult to predict what K should be. In addition, different

numbers of clusters and initial partitions can result in different final clusters.

The advantage of using hierarchical clustering is that it can produce an order-

ing of the objects, which may be informative for data display. They also generate

smaller clusters that may be helpful for discovery. The disadvantage is that it is not

possible to relocate the objects that may have been incorrectly grouped at an early

stage. Also, the use of different distance metrics for measuring distances between

clusters may generate different results.

1.5 Classification

Bi-clustering algorithms provide a method for finding subgroups of genes and sam-

ples that have similar patterns under a certain experimental conditions. After clus-

tering, the next step is to find the relationship within genes and samples or between

them (supervised learning task). Classification deals with the problem of predicting

class membership of unlabeled test data points after learning from a training set of

data points with known class memberships. There are several classification tasks

involving microarray data that biologists are interested in, depending on the studies.

Here is a summary of the major classification tasks:

• Gene Classification: Using the expression values of a set of genes belonging

to known classes (based on the functionality of genes), predict the class of a
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new gene, with known expression value.

• Gene Interactions: It is known that the expression level of gene g is regu-

lated by a set of other genes, G. Using the expression values of the genes in

the set G, predict the expression value of g.

• Sample Classification: Using the expression values of a set of samples with

known classes, predict the class of a new sample based on its expression

values.

• Time Series: Gene expression levels change over time, as proteins regulate

gene transcription, due to a change in the state of a disease, or due to the effect

of a certain treatment. Given expression levels of genes from different time

points {t1, . . . , tn}, predict the time point for a new gene given its expression

value.

This thesis focuses on the third task: sample (patient) classification. Sample

classification requires learning a classifier from the data for different samples (with

known class) and their gene expression levels. The learned model is then used to

predict the class of a new sample. Predicting the class of a patient includes:

1. Cancer versus Normal (Diagnosis): Having expression values of a set of

patients, some of whom have cancer and some of whom do not have cancer,

build a classifier based on this information in order to predict if a new patient

has cancer or not.

2. Type of cancer (Diagnosis): Having expression values of a set of patients,

all of whom have the same cancer (for example, human acute leukemia) with

different types (acute myeloid leukemia, AML, versus acute lymphoblastic

leukemia, ALL), predict the type of cancer for a new case.

3. Clinical outcome (Prognosis): Like the previous studies, in this task expres-

sion values of a set of patients, all of whom have the same cancer, is given.

They will all go under the same treatment and after a certain amount of time

they will be checked to determine if they have responded to the treatment or
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not. The class label here is whether their cancer recurred after a certain treat-

ment or not. Therefore, the task here is to build a classifier in order to predict

if a patient responds to a certain treatment or not.

For this task, a set of microarray experiments, each corresponding to mRNA

from a different patient, is given. The mRNA is taken from the same cell type from

each patient. Since this is supervised learning, the class labels for these patients

are known as well. We want to use this set of patients (their expression values

and their classes) to produce a classifier that can be used to accurately predict the

class of a new patient, given his or her gene expression values. Using all the genes

in order to build the classifier and predict the patient’s class often leads to over-

fitting the data. Here Over-fitting means that the prediction accuracy on training

data increases as the number of features increases while the prediction accuracy on

test data decreases (Figure 1.6). This often occurs when the number of features (i.e.

genes) is large with respect to the number of training cases (samples), especially

when the features are highly correlated with each other, or if many features are

irrelevant.
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Figure 1.6: Over-fitting.

The best way to avoid over-fitting is to use lots of training instances. Unfortu-

nately, in microarray data, there are very few. Usually only tens to a few hundred

of samples are available with each sample having lots of features (tens of thousands
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of genes). Therefore, there are several algorithms for finding a smaller set of genes

in order to avoid over-fitting the data.

The first task (cancer versus normal) is relatively easy to predict accurately, be-

cause many genes change in cancer cells. Since the expression levels for thousands

of genes are known, it is possible to find a subset of genes that changes in their

expression levels lead to accurately predicting the class of patients. The challenges

here include the quality of mRNA, and the noise in the data. For these studies, sup-

port vector machines usually give high prediction accuracies. Similarly, there are

several algorithms that can be applied for the second task, and they can predict with

high accuracy.

The third task is more challenging. As all the patients have the same cancer

and the treatment is the same for all of them, the gene expression levels are very

similar for all the samples, and finding patterns in them is harder than the previous

tasks. Another challenge with these studies is that the number of samples is even

smaller than the other cases. Finding the patients with exactly the same disease and

having them come back to determine the state of their disease after a certain time is

difficult. Often the classifiers that work well for the first two tasks, do not predict

the class labels accurately for this type of study. This type of study is very important

because, if it is clear that a certain treatment is not going to work for a patient, then

the doctors can use some other treatments.

We would like to classify the samples, but since the first two tasks are easier, we

focus on predicting the clinical outcome based on gene expression data. Because it

is very important and there are not many “good” studies that can predict the clinical

outcome accurately. The results for the other tasks will be available at [6].
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Chapter 2

Related Work

2.1 Bi-clustering Algorithms

2.1.1 The Problem

The microarray data is stored in an n × p matrix M , which is defined by a set

of rows (genes), G = {g1, g2, . . . , gn}, and a set of columns (samples), S =

{s1, s2, . . . , sp}, where |G| � |S|. Each element mij is given as a real value, which

is usually the logarithm of the relative abundance of the mRNA of the gene under

a specific condition [3]. Here mij represents (the logarithm of) the expression level

of gene i for sample j (or under condition j). Table 2.1 shows an example of the

gene expression matrix.

Sample 1 Sample 2 . . . Sample j . . . Sample p

Gene 1 m11 m12 . . . m1j . . . m1p

Gene 2 m21 m22 . . . m2j . . . m2p

. . . . . . . . . . . . . . . . . . . . .

Gene i mi1 mi2 . . . mij . . . mip

. . . . . . . . . . . . . . . . . . . . .

Gene n mn1 mn2 . . . mnj . . . mnp

Table 2.1: Data matrix for gene expression values.
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MIJ is a sub-matrix of M , where I ⊆ G is a subset of genes (rows), and J ⊆ S

is a subset of samples (columns).

A bi-cluster is a subset of genes that have a similar pattern over a subset of

samples, or vice versa. Bi-cluster MIJ is a subset of genes and a subset of samples,

where (after re-ordering) I = {x1, . . . , xh} such that I ⊆ G and h ≤ n, and

J = {y1, . . . , yl} such that J ⊆ S and l ≤ p. Therefore, a bi-cluster is defined as

an |I| × |J | sub-matrix of M .

Hence, the problem is as follows: Given a data matrix, M , find a set of bi-

clusters, Bk where k = 1, . . . , K, such that the set of genes, Ik, in Bk have similar

pattern under the set of samples, Jk, in Bk.

In [3], the authors established a relation between data matrices and graph theory.

Using this connection, then they discussed the complexity of this problem. They

represented the data matrix as a weighed bipartite graph. A graph G = (V, E),

where V is the set of vertices and E is the set of edges, is bipartite if its vertices can

be partitioned into two sets L and R (V = L∪R, L∩R = {}), such that every edge

in E has exactly one end in L and the other in R. The data matrix M can be viewed

as a weighted bipartite graph where each node ni ∈ L corresponds to a gene and

each node nj ∈ R corresponds to a sample. The edge between nodes ni and nj has

weight mij from the data matrix.

The complexity of the problem depends on the exact problem formulation and

evaluation of the quality of the given bi-cluster. Almost all variations of this prob-

lem are NP-complete. Because of the complexity of the problem, many bi-clustering

algorithms use heuristic approaches to find the bi-clusters. The ones that avoid

heuristics can have exponential worst-case running time [3].

2.1.2 Previous Work

Madeira et al. [3] provides a comprehensive survey that analyzes a large number

of existing approaches to bi-clustering. They classify them according to the type of

bi-clusters they can find, the patterns of bi-clusters that are discovered, the methods

used to perform the search, and the target applications. They identify different types
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of bi-clusters that the bi-clustering algorithms can find:

1. Bi-clusters with constant values; ∀m1, m2 ∈ MIJ m1 = m2 = µ, where µ is

the baseline value for the bi-cluster (Figure 2.1(a)).
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Figure 2.1: Examples of type 1 and type 2 bi-clusters.

2. Bi-clusters with constant values on rows or column (Figures 2.1(b), 2.1(c)):

• Constant rows: ∀i ∈ I , j1, j2 ∈ J mij1 = mij2 .

• Constant columns: ∀i1, i2 ∈ I , j ∈ J mi1j = mi2j .

3. Bi-clusters with coherent values; There are two models for bi-clusters with

coherent values; Figure 2.2 shows an example for each of these models:

• The additive model: In this model each element of the bi-cluster is rep-

resented as mij = µ + αi + βj, where µ, αi, βj ∈ R, µ is the baseline

value for the bi-cluster, αi is the adjustment for row i, and βj is the

adjustment for column j.

• The multiplicative model: In this model, each element of the bi-cluster

is represented as mij = µ × αi × βj , where µ, αi, βj ∈ R, µ is the

baseline value for the bi-cluster, αi is the adjustment for row i , and βj

is the adjustment for column j. Our RoBic fits into this category.
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Figure 2.2: Examples of type 3 bi-clusters. For the additive model, µ = 0, α =
[1, 3, 5], and β = [0, 1,−2, 3]; for multiplicative model, µ = 1, α = [1, 3, 4, 2], and
β = [1, 2].

4. Bi-clusters with coherent evolutions: these are the subsets of rows and subsets

of columns with coherent values regardless of the exact numeric values in the

data matrix. This property can be observed on the entire bi-cluster (on both

rows and columns of the sub-matrix), on the rows of the bi-cluster, or on the

columns of the bi-clusters. For example, in gene expression data, we might be

interested in finding a subset of genes that are up-regulated or down-regulated

across a subset of samples without taking into account their actual expression

values in the data matrix. See Figure 2.3 for examples.

To find type 1 bi-clusters (with constant values), the rows and columns of the

data matrix have to be re-arranged somehow in order to have best presentation of

the similar rows and columns together. Then find subsets of rows and subsets of

columns with constant values. In other words, for gene expression data, constant

bi-clusters find the subset of genes with constant expression values within a subset

of samples. A perfect constant bi-cluster is a sub-matrix MIJ , where all mij = µ,

for all i ∈ I , and j ∈ J . But this approach finds bi-clusters that have a subset of

genes with constant expression values for a subset of samples when it is performed

on data without noise, which is not true for a lot of microarray data. This means
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Figure 2.3: Examples of type 4 bi-clusters. For example, “a” represents the genes
that are up-regulated across a subset of samples, or “b” represents the genes that are
down-regulated across a subset of samples.

that the values mij for a bi-cluster are generally presented as ηij + µ, where ηij is

the noise associated with position (i, j).

A bi-cluster with constant values in columns identifies a set of samples with

constant expression values across a subset of genes, allowing the expression levels

to differ from sample to sample. The same explanation can be applied for a bi-

cluster with constant values in rows.

Sheng et al. [9] tackle the problem in the Bayesian framework, by presenting

a bi-clustering strategy based on a frequency model for expression pattern of a bi-

cluster and Gibbs sampling for parameter estimation. Their goal is to find the genes

and samples of a bi-cluster, by representing the pattern of a bi-cluster as a proba-

bilistic model described by the posterior frequency of every discretized expression

level discovered under each sample of the bi-cluster.

There are several problems with this approach:

1. They work with discretized microarray data. The problem with discretization

is that the noise blurs the differences between meaningful values and back-

ground. Having noise in the data (which is true for most microarray datasets)

results in small changes in the expression values. As a simple example, sup-
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pose that mij ∈ R, and 0 ≤ mij ≤ 1, ∀mij ∈ M and the gene expression

value for the kth gene (1 ≤ k ≤ n) and the lth sample (1 ≤ l ≤ p) is

mkl = 0.5 − εkl, where εkl is the amount of noise associated with the klth

element. Suppose the data is discretized to matrix D such that

• dij = 0 if 0 ≤ mij < 0.5, and

• dij = 1 if 0.5 ≤ mij ≤ 1.

The noise level in the data can cause an element with value of Mkl = 0.5−εkl

to be in the wrong category of discrete data. This can cause problem, because

it is not possible to distinguish Mkl from another mij whose expression value

is very small (i.e. 0.0001), and they are both in the same category after dis-

critization.

2. They use multinomial distributions to model the data in every column (or

row) in a bi-cluster, which might not be a correct model for the data. They

refer to this model of the bi-cluster as the pattern Θ, a matrix that each column

Θ.j contains the parameters for the jth independent multinominal distribution.

Θ =

























θ11 . . . θ1j . . . θ1w

θ21 . . . θ2j . . . θ2w

... ... ...

θl1 . . . θlj . . . θlw

























where 0 ≤ θij ≤ 1,
∑

i θij = 1, and l is the number of genes, and w denotes

the total number of conditions in the bi-cluster.

3. They assume that these multinomial distributions for different columns in a

bi-cluster are mutually exclusive. They work with a row-column orientation

of the data matrix and want the values within bi-clusters to be consistent

across the rows of bi-clusters for the selected columns, but these values may

differ for each column.

21



4. Their probabilistic model considers only the presence of a single bi-cluster

the data set.

Sheng et al. applied their algorithm on a leukemia microarray data set, which

grouped samples based on their expression behavior over a subset of genes. The

samples collected in every bi-cluster came from the same category.

Kluger et al. [10] look for checker-board structures (bi-clusters with coherent

values) in the data matrix by integrating bi-clusters of rows and columns with nor-

malization of the data matrix. They assumed that after a particular normalization,

which was designed to find bi-clusters, if they exist, the contribution of a bi-cluster

is given by a multiplicative model: mij = µ×αi×βj , where µ, αi, βj ∈ R, µ is the

value within the bi-cluster, αi is the adjustment for row i, and βj is the adjustment

for column j. They also use gene expression data and see each value mij in the data

matrix as the product of the tendency of gene i to be expressed in all samples and

the tendency of all genes to be expressed in sample j. In order to evaluate the qual-

ity of a bi-cluster, they tested the results against a null hypothesis of no structure in

the data matrix. They presented their results by figures of clusters found from the

datasets.

But all of these bi-clustering approaches evaluate separately the contributions

of bi-clusters, without considering the interactions between bi-clusters.

In 2000, Lazzeroni and Owen [7] introduced the Plaid models for gene expres-

sion data. These models are of a form of bi-clustering, in which the value of an

element in the data matrix is viewed as a sum of terms called “layers” (which is

the equivalent of bi-clusters). To find the bi-clusters, they first form a color image

of the data on an n by p grid, with each cell colored according to the value of mij .

Then they use some ways of reordering the rows and column in order to group the

similar rows and similar columns together, to form an image with blocks of similar

colors (values). Each block is nearly uniformly colored and the image outside the

blocks has natural background color. Figure 2.4 shows an example.

In other words:

mij = µ0 +

K
∑

k=1

θijkρikκjk
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Figure 2.4: Color image of data for Plaid models before and after reordering disjoint
rows and columns [7].

where µ0 is the background color, K is number of bi-clusters, and θijk is the color

in bi-cluster k specified by row i and column j, ρik and κjk are binary values that

represent the membership of row i and column j in bi-cluster k, respectively. That

is,

• ρik = 1 if gene i is in bi-cluster k, otherwise it is 0.

• κjk = 1 if sample i is in bi-cluster k, otherwise it is 0.

If every gene and every sample is in exactly one bi-cluster, we would have
∑

k ρik = 1 for all i, and
∑

k κjk = 1 for all j. However, Plaid considers a

more general model, where for overlapping bi-clusters
∑

k ρik ≥ 2 for some i,

and
∑

k κjk ≥ 2 for some j. For the genes or samples that do not fit into any

bi-clusters,
∑

k ρik = 0 for some i, and
∑

k κjk = 0 for some j.

The Plaid algorithm finds the bi-clusters one at a time. It searches for bi-cluster

K in the residual

Rij = mij − θij0 −
K−1
∑

k=1

θijkρikκjk,
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,where θij0 = µ0, to minimize the sum of squared error:

1

2

n
∑

i=1

p
∑

j=1

(Rij − θijKρiKκjK)2.

They use the EM algorithm to find the θ, ρ, and κ values. Each bi-cluster that

the Plaid algorithm finds may represent the presence of a particular set of biological

process or conditions. θijk values provide the effects of bi-cluster k upon the genes

and samples.

In [3], the Plaid algorithm is called the general additive model (Figure 2.5), and

after comparing an extensive list of available algorithms, they conclude that this

model is “rich enough to appropriately model very complex interactive processes”.

Therefore, we will compare our bi-clusters with Plaid’s.
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Figure 2.5: Overlapping bi-clusters with general additive model.

Preli et al. [4] provides a systematic comparison and evaluation of prominent

bi-clustering methods in the light of gene classification. In particular, the authors

focus on the following questions:

• What comparison / validation methodology is adequate for the bi-clustering

context?
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• How meaningful are the bi-clusters selected by the existing methods?

• How do different methods compare to each other?

They introduced a new algorithm (Bimax) and compared it with five different

algorithms, and hierarchical clustering.

Bimax works with discretized microarray data, where the data is converted into a

binary matrix. The idea is illustrated in Figure 2.6. First, it tries to identify the areas

of M that has 0’s and can be excluded from next inspection. It partitions the data

matrix M into three sub-matrices, one of which contains 0’s only. The algorithm is

then recursively applied to the remaining sub-matrices, called U and V below. The

recursion ends if the current matrix represents a bicluster (it contains only 1’s). The

algorithm stops if either q biclusters have been selected (for real datasets, q is set

to 100) or none of the remaining ones fulfills the selection criterion. The selection

procedure they adopted follows a greedy approach: in each step, the largest of the

remaining biclusters is chosen that has less than o% of its cells in common with

any previously selected bicluster; for real datasets a they set maximum overlap of

o = 25%.

Figure 2.6: Illustration of the Bimax algorithm. “To divide the input matrix into
two smaller, possibly overlapping sub-matrices U and V , first the set of columns
is divided into two subsets CU and CV , here by taking the first row as a template.
Afterwards, the rows of E are resorted: first come all genes that respond only to
conditions given by CU , then those genes that respond to conditions in CU and in
CV and finally the genes that respond to conditions in CV only. The corresponding
sets of genes GU , GW and GV then define in combination with CU and CV the
resulting sub-matrices U and V which are decomposed recursively” [4].
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At the end they compared the algorithms based on GO annotations and metabolic

pathway information. They conclude that most bi-clustering algorithms, in this

study, are capable of dealing with overlapping transcription modules and gener-

ate functionality enriched clusters. They have implemented these algorithms [23],

but we could not use this as it is not easy to store the found bi-clusters for further

analysis and comparisons.

2.2 Classification Algorithms

We are interested in the following classification problem: Given DNA-microarray

data for a set of samples characterized by a given class, identify “patterns” of gene

expression that can be used to predict the sample class.

Supervised learning methods have been established (e.g. [21]) to predict if a

sample belongs to a known class or not depending on the sample’s gene expression

profile. Van’t Veer et al. [11] applies supervised classification to identify a gene

expression signature that can predict the clinical outcome of breast cancer, that is

predicting if a patient remains disease-free after a certain period of time or not.

They selected approximately 5, 000 genes (the ones that were significantly regu-

lated across a group of samples) from the 25, 000 genes on the microarray. The

correlation coefficient of the expression for each gene with disease outcome was

calculated and 231 genes were found to be significantly associated with the disease

outcome based on all samples. Then they rank-order these genes based on the mag-

nitude of the correlation coefficient. Then, the number of genes in the ’prognosis

classifier’ was optimized by sequentially adding subsets of 5 genes from the top

of this ranked-ordered list and evaluating its power for correct classification using

cross-validation. They gain the best accuracy, 83%, using 70 of the marker genes.

In cross-validation, a portion of the data is set aside as training data leaving the

remainder as testing data. In K-fold cross-validation, the original sample is parti-

tioned into K subsamples. From the K subsamples, a single subsample is retained

as the test data for testing the model, and the remaining K − 1 subsamples are used
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as training data. The cross-validation process is then repeated K times (the folds),

with each of the K subsamples used exactly once as the test data. The K results

from the folds then can be averaged to produce a single estimation.

The problem with their approach was that they selected the features (genes) by

looking at the entire dataset. Instead, they should have done the feature selection in

each cross-validation fold. By doing this, they may select a different set of attributes

for each cross-validation fold because each fold uses a different training set to de-

cide which attributes to keep. When they corrected their approach, the prediction

accuracy went down by 10%, to 73% [24].

Golub et al. [12] developed another method for class prediction. First they find

the genes whose expression values were strongly correlated with the class distinc-

tion to be predicted. Then they developed a method called “neighborhood analysis”

to define an “idealized expression pattern” corresponding to a gene that is uniformly

high in one class and uniformly low in the other. Then they use a fixed subset of

“informative genes”, chosen based on their correlation with the class distinction.

Each informative gene casts a “weighted vote”, and the votes were summed to de-

termine the winning class as well as a “prediction strength”. They applied their

method to a human leukemia database. The predictor made “strong prediction” for

AML versus ALL class prediction. In total, the predictor made strong prediction

for 29 of the 34 samples, and the accuracy was 100% for those 29 samples. But the

neighborhood analysis found no striking excess of genes correlated with response

to chemotherapy, comparing to the AML-ALL distinction. They found no evidence

of a strong multi-gene expression signature correlated with clinical outcome. We

report our result on this data set in Chapter 5.

To determine if different types of tumors could be molecularly distinguished,

Pomeroy et al. [13] used principal component analysis, in which the high dimen-

sionality of data was reduced to three viewable dimensions representing linear com-

bination of features (genes) that account for most of the variance in the original

dataset. The normal samples were easily separable from tumors and the different

tumor types were similarly separable, using hierarchical clustering. For tumor clas-

sification using these genes, they used a weighted-voting algorithm and evaluated
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by cross-validation testing. Their system achieved 83% classification accuracy of

tumors. Next, they checked if their clusters were correlated with patient survival.

Their method could not find any statistically significance in the proportion of sur-

vivors compared with treatment failure in each cluster. They then tried another

technique, a k-nearest neighbor algorithm (k-NN), to compute the distance of a test

sample to each of the training samples, with known classes. Then they predicted the

class of the sample to be that of the majority of the k-closest sample. The outcome

predictions based on gene expression were statistically significant for k-NN models

ranging from 2 to 21 genes. The optimal predictions made by an 8-gene model with

78% accuracy.

Singh et al. [14] also use a k-NN approach with gene selection for predicting

the class label of unknown prostate cancer samples. They use the same approach

for predicting the clinical outcome and obtained 90% accuracy for a 5-gene model

with 2 nearest neighbors. They performed a 1000 permutation test 1 on class labels

(recurrence versus non-recurrence) and found 37 of their models whose accuracy

matched or exceeded theirs.

Gordon et al. [16] described an alternative approach using gene expression mea-

surements to predict clinical parameters in cancer. They select 2 genes randomly,

then use the ratios of their expression levels and choose thresholds to accurately

distinguish between different classes of samples. This approach works fine for pre-

dicting different types of tumors in lung cancer in mesothelioma, but when applied

on clinical outcome dataset [13] , the prediction accuracy dropped by 10%, to 68%.

A widely used classification approach for microarrays is the “shrunken centroid

method” [18], which finds subsets of genes that best characterize each class. It

shrinks the class centroids (by a shrinkage parameter δ) toward the overall cen-

troids after standardizing by the within-class standard deviation for each gene. This

standardization has the effect of giving higher weight to genes whose expression

is stable within samples of the same class. The shrinkage it uses is called soft
thresholding. The threshold, δ, can be determined by a cross-validation process.

This method has the property that many of the genes are eliminated from the class

1see Chapter 5
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prediction as δ increases.

Somorjai et al. [19] used exhaustive search as feature selection method (with

least trimmed squares, LTS, or linear discriminant analysis, LDA, and leave-one-

out cross-validation), requesting only two genes. LDA finds the linear combination

of features that best separate two or more classes of samples. Then, they use the

selected genes for class prediction. The prediction accuracy is between 92.9% and

97.1% (using 3-7 genes) for a prostate cancer versus healthy dataset.

Pranckeviciene et al. [20] uses the optimal features found by the LDA EX-FS

classifier. They find the optimal features by using exhaustive-search-based feature

selection (see their paper for more detail). They order the genes according to the

classifier accuracy they produce. Then, they compare the classification results ob-

tained with four different classifiers, using this optimal number of features.

For microarray classification, in general, the found best classifiers are SVM and

the shrunken centroids methods. In addition, most findings confirm that feature se-

lection leads to better classification performances, and that it is generally advisable

to perform some dimensionality reduction, or at least exploratory analysis prior to

classification.

The usual method is to screen the genes by employing univariate statistical tests

for class discrimination, to select a subset of genes. Then the quality of this subset

is evaluated by its classification performance on an independent test set. We intro-

duce an algorithm to reduce the dimension of the dataset by finding the bi-clusters

(Chapter 3). Then we use these bi-clusters to predict the class of samples based on

their membership in the bi-clusters (Chapter 4).
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Chapter 3

Finding Bi-clusters

Recall from Section 2.1.1 that the microarray data is stored in an n × p matrix M .

Each element mij is given as a real value, which represents the expression level of

gene i for sample j (or under condition j). A bi-cluster is a subset of genes that

have similar pattern over a subset of samples. Bi-cluster MIJ is a subset of genes

and a subset of samples, where I ⊆ {1, . . . , n} and J ⊆ {1, . . . , p}. Therefore, a

bi-cluster is defined as a sub-matrix of M ; see Section 2.1.1 for more detail. This

chapter describes the structure of our algorithm for finding the bi-clusters.

3.1 The Algorithm

We have a large matrix M , where |M | is n × p (e.g. 50, 000 × 80); see Figure 3.1.

Our first sub-goal is to find two vectors, α and β, of size |α| = n (e.g. 50, 000) and

|β| = p (e.g. 80) that minimize

‖M − α.βT‖ =
∑

ij

(mij − αi.βj)
2.

The algorithm is based on the least squares rank-1 matrix approximation to M .

Computing the singular value decomposition (SVD) of M gives three matrices, U ,
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Figure 3.1: Plot of gene expression values (data matrix M ) for breast cancer [11]
data.

S, and V as shown in Figure ?? such that:

[U, S, V ] = SV D(M, d)

• U is n × d with orthonormal columns (d is given or d = min{n, p}),

• S is a diagonal matrix of d eigenvalues in decreasing order (of size d × d),

and

• V is p × d with orthonormal columns.

Then, U.S.V T is the closest rank-d approximation to M . For proof and more

details see [25, page 72], [26, page 322], and [27, page 288]. The columns of U

are called the left singular vectors of M and the columns of V are called the right
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M = U VS

nxp nxd

dxd

pxd

Figure 3.2: Singular value decomposition of the data matrix M .

singular vectors of M . If d = 1 (rank-1 approximation) then S is a scalar and we

set:

α = U

β = V.S

Then, α.βT = U.S.V T is the least square rank-1 approximation of M . Note

that since S is a scalar, we can set α = U.S and β = V , too. But, for the rest of our

computations, it does not make a difference. We let α represent the genes’ vector

and β represent the samples’ vector.

In the next step, we sort the values in α and β in descending order producing

α(s) and β(s), and re-arrange the rows and column in M such that the order of

genes and samples in M is the same as the α(s), and β(s), vectors. Let’s call the

re-arranged data matrix Msorted; see Figure 3.3. Figure 3.4 shows the plot of |α(s)|

values (absolute values) and Figure 3.5 shows the plot of |β (s)| values for breast

cancer data as an example.

Now that we have two vectors for genes and samples with sorted values, we

need to define a “hinge function” that gives a subset of genes and subset of samples

that define a bi-cluster.
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Figure 3.3: Plot of re-arranged gene expression values (data matrix Msorted) for
breast cancer [11] data.

We find the subsets by approximating the values in the vectors by two best

lines. That is, for each i = 1, . . . , n, find the best fitting line for values α
(s)
1 to

α
(s)
i , which has error e

(i)
1 , and the best fitting line for values α

(s)
i+1 to α

(s)
n , with error

e
(i)
2 . Then choose i, the separation point for genes, such that e

(i)
1 + e

(i)
2 is minimum;

i = argmin{e
(i)
1 + e

(i)
2 }. Therefore, the genes from index 1 to i are in the current

bicluster. We can find the samples’ separation point, j, (the samples in the bi-cluster

with similar pattern) using the same procedure. Because of the large number of

genes, we use only the first half of the genes in the sorted vector (α(s)
1 , ..α

(s)
n

2

) to find

the best fitting lines for gene values. See lines shown in Figure 3.4 and 3.5.

We have tried other approaches for finding the subsets of genes and samples

from the α and β vectors. Appendix A describes other hinge functions that we have

considered, which did not work as well as the “two line approach” shown above. It

also describes other approaches for finding the bi-clusters that we have tested.

After finding the genes and samples in the first bi-cluster, we subtract their

values off from the data matrix, and repeat the same process on the remainder of the
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Figure 3.4: Plot of sorted α (absolute) values for breast cancer [11] data.

data matrix to find the next bi-clusters. The details of this process are as follows:

Let ατ be a vector whose first ith elements are equal to the first ith elements of

the sorted α and the rest of its elements are 0. That is,

ατ = {α
(s)
1 , α

(s)
2 , ..., α

(s)
i , 0, 0, .., 0}

and |ατ | = |α| (size of ατ is the same as α). Similarly,

βξ = {β
(s)
1 , β

(s)
2 , ..., β

(s)
j , 0, 0, .., 0}

and |βξ| = |β|. Then,

M (2) = Msorted − ατ .βξ
T .

34



0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Samples

So
rte

d 
Va

lu
es

Figure 3.5: Plot of sorted β (absolute) values for breast cancer [11] data.

M (2) is the new data matrix formed after removing the values for the genes and

samples in the first bi-cluster. We repeat the same process on the M (2) to find the

next bi-clusters. That is, find the new α(2) and new β(2) vectors that is the best rank-

1 approximation to the M (2). Find the subsets of genes and samples from the new

vectors. Subtract their values from M (2) to produce M (3), and repeat the process on

the remainder matrix, M (3). Figure 3.6 summarizes our algorithm.

Since we are using the bi-clusters to reduce the dimensionality of the data ma-

trix, we can repeat this process until we find the number of the bi-clusters that gives

us the best prediction accuracy for the sample classification. Chapter 4 explains

how the bi-clusters can be used to predict a particular label over two classes of

samples.
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M (1) = M .
for i = 1..30 do

1. Compute the largest singular value decomposition of M (i),

[U, S, V ] = SV D(M (i), 1).

2. Set α = U and β = V.S,
(α.βT is the best rank-1 approximation to M (i))

• α represents the genes’ vector, and
• β represents the patients’ vector.

3. Sort the values in α and β vectors, to get α(s) and β(s).

4. Re-arrange the rows and columns in M (i) such that the order of genes
and patients is the same as α(s) and β(s). This gives M

(i)
Sorted.

5. Find the separation point for genes, i, and for patients, j by approx-
imating the values in α and β vectors using a hinge function. Here
the hinge function is fitting the values in the vectors to two best lines.
The genes from index 1 to i and the patients from index 1 to j are in
the current bi-cluster.

6. Set

• α
(s,i)
τ = {α

(s)
1 , α

(s)
2 , ..., α

(s)
i , 0, 0, ..., 0},

• β
(s,j)
ξ = {β

(s)
1 , β

(s)
2 , ..., β

(s)
j , 0, 0, ..., 0}.

7. M (i+1) = M
(i)
Sorted − α

(s,i)
τ .β

(s,j)T
ξ .

Figure 3.6: Summary of rank-1 bi-cluster algorithm (RoBic).
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Chapter 4

Bi-cluster Classifier

Chapter 3 explains how to find the bi-clusters, subsets of genes and subsets of sam-

ples with similar patterns. This chapter explains how we can use the bi-clusters

to reduce the dimensionality of the data matrix, and predict the class of a novel

sample.

4.1 The Problem

We have p samples, and for each of these samples we have n different features,

which is their gene expression values, such that n � p. We also know the class

labels for q samples (q < p), which form the training set. The goal is to predict the

class labels for the rest of the samples, the test set (which includes p − q samples),

based on the gene expression values for both training set and the test set.

Instead of directly using all n features, or selecting a subset of the n features,

to predict the samples’ class label, we reduce the dimension of the data matrix M ,

which is n × p, to p × K by finding K bi-clusters from M , where K � n.

Hence, the problem is as follows: Given a data matrix, M , a set of bi-clusters

{B1, B2, . . . , BK} from M , and a subset of samples with known classes, predict the

class label for the samples in the test set.
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4.2 The Algorithm

Suppose we have K bi-clusters, {B1, B2, . . . , BK}, each of which has an associated

subset of genes and a subset of samples. The class label is known for a group of

samples in M , the training set, but is unknown for the rest, the test set. We reduce

the dimensionality of the data matrix M (n × p), which is originally very large,

based on the bi-clusters to get matrix R, which is p × K. We do this by creating

a bit vector for each sample, where the element rjk of R is 1 if the jth sample is

in the kth bi-cluster, otherwise it is 0. Table 4.1 shows an example of the reduced

dimension of the data matrix, the training set, and the test set.

B1 B2 . . . Bk . . . BK Sample Class
Sample 1 1 1 . . . 0 . . . 1 +
Sample 2 1 0 . . . 0 . . . 0 −

... ... ... ... ... ... ... ...
Sample j 1 1 . . . 1 . . . 1 +

... ... ... ... ... ... ... ...
Sample q 1 1 . . . 0 . . . 1 +

Sample q + 1 0 0 . . . 0 . . . 1 ?
... ... ... ... ... ... ... ?

Sample p 1 1 . . . 0 . . . 0 ?

Table 4.1: The reduced-dimension of the data matrix, R. The element rjk of R is 1
if the jth sample is in the kth bi-cluster, otherwise it is 0.

Now that we have the reduced-dimension version of the data matrix, we can

apply any classification algorithm to predict the class labels for the test set. We

use two main classification algorithms: “Support Vector Machines” (SVM), and

“Naive Bayes” (N.B.) [28]. Figure 4.1 summarizes the algorithm for bi-cluster

classifier,RoBicC.

Since finding the bi-clusters and classification based on the bi-clusters are two

independent steps, one can replace the rank-1 bi-clustering algorithm, RoBic, with

other bi-clustering algorithm to find a (perhaps different) set of bi-clusters, and

classify the samples based on those found bi-clusters.

The next chapter presents some prediction accuracies based on the rank-1 bi-
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RoBicC(L, Training set, Test set)

1. Find the bi-clusters from the data matrix, M , using both the unlabeled
part of the training set and the test set.

2. Build the binary matrix, R, based on the membership of the samples
in the bi-clusters.

3. Learn a classifier, C, using R, the training set labels, and learning
algorithm L.

4. Run the classification algorithm C, to predict the class label of sam-
ples in the test set.

Figure 4.1: Summary of bi-cluster classifier algorithm, (RoBicC[L], where L is the
classification algorithm, e.g. SVM or Naive Bayes).

clustering algorithm, and compares them with the results from the Plaid [7] bi-

clusters, and other approaches for classifying samples.
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Chapter 5

Datasets and Results

We proposed an algorithm for finding bi-clusters from the microarray data, which

reduces the dimension of the data matrix, M . In order to evaluate the quality of the

bi-clusters, we proposed a method for classifying samples based on these found bi-

clusters. In this chapter we apply our approach on some publicly available datasets

and compare the results with other approaches including some based on other types

of bi-clusters.

This project was started with a microarray data from the Cross Cancer Institute;

see Appendix B for more details. The number of samples in this dataset was too

small to verify our approach, and so we sought a dataset with more samples in or-

der to verify both the bi-clustering algorithm and the bi-cluster classifier. Therefore,

we used some publicly available microarray datasets [11], [12], [13], [14], [15]. We

will mainly use the datasets for predicting the clinical outcome of a certain treat-

ment. By using the publicly available data, we can compare our results with other

known results for the same dataset. Table 5.1 describes the dataset characteristics.

Before analyzing the data, we had to deal with the missing values in the data.

First, we remove a gene if its expression value was missing for at least one patient

(if any such gene existed). Next, we found the bi-clusters using the complete data

set. Note that in this process we do not use the any prior knowledge about the class

of the samples. We extract 30 bi-clusters from datasets (we can extract more bi-
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Info/Dataset Breast Cancer AML [12] Brain [13] Prostate[14] Colon
[11] (Outcome) (Outcome) (Outcome) [15]

Number of 76 15 60 21 62
Samples

Number of 23625 7129 7129 12600 2000
Genes

Number of 2 2 2 2 2
classes
Class 1 relapse fail fail recurrent negative
(count) (32) (8) (39) (8) (40)
Class 2 non-relapse success survive non-recurrent positive
(count) (44) (7) (21) (13) (22)

Table 5.1: Characteristics of the datasets.

clusters if needed). Then, we build the binary matrix, R, of the transformed data,

based on the bi-cluster membership; for more details see Chapter 4.

The code for finding the bi-clusters from M is written in MATLAB. A script

is written in JAVA to transform M to R, based on the bi-clusters. The transformed

matrix is written in Weka [33] format (ARFF). Weka is a collection of machine

learning algorithms for data mining tasks. It contains tools for data pre-processing,

classification, regression, clustering, association rules, and visualization. We use

Weka for building the classifier on the transformed data and evaluating the results.

For finding the optimal number of bi-clusters, Bopt, we used the following meth-

ods:

1. “opt” is the optimal number of bi-clusters, in that the prediction accuracy on

test set based on bi-clusters {B1, B2, . . . , Bopt} is maximum.

2. Use the built-in in-fold feature selection algorithms in Weka to find the bi-

clusters that give maximum prediction accuracy on test data.

Table 5.2 shows the prediction accuracies for the data sets, based on 5-fold

cross-validation. The first row shows the “base-line” percentage based on the num-

ber of samples in each class. Base-line percentage is the accuracy of using the

majority class. The second row shows the best known published results for each of

the datasets. The missing values in this row is because of either the study for that
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particular dataset was not for classification, or the authors in original paper did not

provide the accuracy results. The third and fourth rows show the result for applying

Naive Bayes (N.B.) and Support Vector Machines (SVM) classifiers on the original

data matrix, M .

Info/Dataset Breast Cancer AML Brain Prostate Colon
1 Baseline% 57.89% 53.33% 65% 61.90% 64.52%
2 Best publi- 73% 78% 90%

shed result
3 Naive Bayes 63.18% 46.67% 63.33% 47.62% 58.06%
4 SVM 67.11% 53.33% 65% 47.62% 80.65%
5 Plaid+N.B. 73.68% 73.33% 66.67% 66.66% 90.32%

{Bi-clusters} {7} {6},{7},{20} {12} {9} {17}
6 Plaid+SVM 67.11% 66.66% 65% 61.90% 85.48%

{Bi-clusters} {7} {2},{19} {10} {9} {15}
7 RoBiC+N.B 86.84% 80% 91.67% 90.48% 82%

{Bi-clusters} {21} {19-30} {10} {13,15,16,17} {5,7,10}
8 RoBiC+SVM 88.16% 80% 91.67% 95.24% 88%

{Bi-clusters} {25} {18-21,27} {16-18,20,23} {11} {5,10,28}
9 Permut. Test

Average 54.08% 51.66% 60.50% 56.77% 62.51%
Maximum 77.63% 100% 81.67% 90.47% 82.26%

# above
our value 0 27 0 0 0

Table 5.2: Comparing the prediction accuracies for the datasets, based on 30 bi-
clusters and 5-fold cross validation.

Row number 5 contains the results for finding the bi-clusters using Plaid [7],

where the sample classification is based on Naive Bayes classifier. Each number

in curly brackets shows the number of bi-clusters for the specified accuracies, {7}

means {B1, B2, . . . , B7} were used for building the classifier. Row 6 is similar to

row 5, except that SVM classifier is used for sample classification. Similarly, rows

7 and 8 show the prediction accuracies based on the bi-clusters found using RoBiC.

The majority of the bi-clusters that we find have the property that most (or all) of

the samples in a bi-cluster belongs to a particular class of the samples. Figure 5.1

shows the samples in the first 25 bi-clusters for breast cancer data and their class.

Finally the last row shows the results (the average prediction accuracy, the max-

imum prediction accuracy, and the number of models with prediction accuracies
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Figure 5.1: Samples and their class in each bi-cluster from RoBic for breast cancer
data (screen from Weka). The right column in each bi-cluster shows the samples in
that particular bi-cluster. Two different color represent two classes of samples.

higher than our model) for performing 1000 permutation tests on class labels. A

permutation test is a type of statistical significance test in which the class labels

for the data points will be re-arranged (with the original probability distribution

of the labels). Then learning and classification will be done on the new data set

(with re-arranged labels). If the labels are exchangeable (the prediction accuracy in

the re-arranged data is almost the same as the prediction accuracy for the original

data) for many permutation tests, then the likelihood of matching the success of

our model by chance is high. For the AML data only 27 of 1000 tests produced

models whose accuracy matched or exceeded ours. Therefore the probability that

our model classification is by chance is around 0.027.

In Chapter 2, we mentioned that the “shrunken centroid method” [18] is a

43



widely used classification approach for microarrays. We used it to classify the

breast cancer data. The best accuracy that we found using this system, 82.89%, was

based on a threshold δ = 0.

In the original paper for the prostate cancer (outcome) data [14], the authors

obtain 90% accuracy for predicting the outcome. They perform 1000 permutation

tests on class labels (recurrence versus non-recurrence), 37 of which yield models

whose accuracy matched or exceeded the 90% accuracy of their system. Thus, the

likelihood of matching the success of their model by chance alone was estimated

by probability 0.037. We ran 1000 permutation tests on our model, using SVM

Figure 5.2: Histogram of the accuracies for 1000 permutation tests on the Prostate
cancer data.

classifier, the maximum accuracy is 90.47%, and only 5 of the tests yields models

with 90% accuracy or more. Figure 5.2 shows the histogram of the accuracies. Note

that the average prediction accuracy for 1000 permutation test is 56.77% which is

the class average.
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5.1 Another Hinge Function

For finding the subsets of genes and samples from the α and β vectors, we have

tried other hinge functions (see Appendix A for more details). One of them that

works very well for the breast cancer data is as follows:

First, approximate the values in the patients vector by a single best line, using

the absolute values. That is, in β(s) (the sorted patients vector), find the best fitting

line for β
(s)
1 to β

(s)
j , which has error ej .Then choose j, the separation point for

patients, such that ej is minimum. Therefore, the patients from index 1 to j are

in the current bicluster.Subtract their values from the data matrix. Now calculate

α vector from this remainder matrix and choose the subset of genes from this α,

with the same function that finds the subset of samples (fit the absolute values into

a single best line). Subtract the values of the genes in the current bi-cluster from

the matrix and repeat the process on the remainder of the matrix.

In summary, for this version we find the bicluster for the samples first and then

the genes based on the absolute values in vectors, by fitting the values in α and

β to one line. Applying this approach on the breast cancer data, we get 96.05%

prediction accuracy, based on 5-fold cross-validation. The number of bi-clusters

that gives the mentioned accuracy is {16}. In fact, if we apply the in-fold feature

selection for the bi-clusters, bi-cluster number #16 alone is sufficient to obtain the

mentioned accuracy.

In order to assess this result, we performed the permutation test on the class

labels in the dataset based on the bi-clusters. We ran 1000 permutations of the

class labels, the maximum accuracy in 1000 tests, using SVM classifier, is 73.68%,

and the average over all tests is 55.98%. Figure 5.3 shows the histogram of the

accuracies.
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Figure 5.3: Histogram of the accuracies for 1000 permutation tests on the breast
cancer data.

5.2 Other Results

In addition to the microarray data, we applied the rank-1 bi-cluster classifier (Ro-

BicC) approach on a metabolite dataset, in which the number of features is far less

than microarray data. It contains 53 samples and 72 features. Table 5.3 summarizes

the characteristics for the dataset and presents the result.

Number of Samples 53
Number of Features 72
Number of Classes 2

Class 1 (Count) negative (26)
Class 2 (Count) positive (27)

Baseline % 50.94%
Best Known Result 71.9%

RoBicC + SVM {Bi-clusters} 86.70% {17}

Table 5.3: Metabolite dataset information and RoBicC prediction accuracy, based
on 30 bi-clusters and 5-fold cross-validation.
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Chapter 6

Concluding Remarks

6.1 Conclusion

In this thesis, we presented some new results and a survey of the previous results

about the clinical outcome prediction for cancer patients, using microarray data. We

presented a new bi-clustering algorithm based on the best rank-1 matrix approxi-

mation, and a method for sample classification based on the found bi-clusters.

Finding patterns in the gene expression levels helps the biologists to understand

the expression level of the genes under different conditions. Therefore, having a

robust and rich bi-clustering algorithm to model the complex interactive process in

microarray data is very important.

The main goal of this research was to find a method for sample classification by

reducing the dimensionality of the data matrix, using bi-clusters. We also proposed

an algorithm for finding bi-clusters from the microarray data, based on the best

rank-1 matrix approximation. We can use the bi-cluster classifier algorithm in order

to compare the quality of the bi-clusters obtained from different algorithms. The

idea of using bi-clusters to reduce the dimension of the data matrix and predict the

samples class, to our knowledge, has not been used by any published approach.

Most of the bi-clusters that we find have the property that most (or all) of the
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samples in a bi-cluster belongs to a specific class of samples, see Figure 5.1.

In addition to the microarray data, we applied the RoBicC approach on a metabo-

lite dataset. Even though the number of features is very small compared to microar-

ray data, we got better prediction accuracy than the known result. This suggests that

RoBicC can be used on other types of datasets to produce an effective classifier.

6.2 Future Work

Appendix A describes many other heuristics that we have tried, but which did not

work as well as RoBicC. Here we describe other methods that we would like to do

in the future.

• Fit the values in the α vector to a normal distribution (see Figure 6.1). Then

choose the subset of genes, {1, . . . , i}, whose values are greater than a spe-

cific amount based on the mean and variance of the normal distribution. Then

choose the subset of samples {1, . . . , j} such that

‖M(1..i, j) − α(1..i).βj‖

is minimum.

The same approach can be applied to the α vector, but instead of looking at

the genes from index {1, . . . , i}, we can look at both ends of the α vector.

That is, fit two normal distributions to the data and for each of them find

genes from index {1, . . . , i1} and {i2, . . . , n}, whose values are greater than

a specific amount based on the mean and variance of the normal distributions.

• Our current bi-cluster classifier, first builds a binary matrix, R, such that each

element rjk of this matrix is 1 if the jth sample is in the kth bi-cluster, other-

wise it is 0. Instead, we can use continuous values in R, for example, from 1

to 0; where the value 1 means the sample is the first element chosen for this
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Figure 6.1: Histogram of the β values for breast cancer data.

bi-cluster, 1 − 1
k

means the sample is the second element chosen for this bi-

cluster, . . ., and 1
k

means the sample is the last element, all other elements are

0. To justify this, note that most of the time, the values at the top of the vector

correspond to patients of one class and the values at the bottom correspond

to the other class. By doing this, we give more weights to the top patients

that might be in the same class, and the classifier will use the real values for

prediction instead of nominal (0/1) values.

• All the datasets that we use have two classes, because we focused on pre-

dicting the binary clinical outcomes, i.e. whether a patient responds to a

certain treatment or not. It is also possible to apply the algorithm on multi-

class datasets, that have more than two classes of samples, using the same

bi-clusters, but perhaps a different classifier. Since we do not use any priori

knowledge about the class labels when finding the bi-clusters, we can use the

same algorithm for multi-class datasets.

• We used the bi-clusters to predict the samples’ class, but they can also be used
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to predict the gene’s class (based on their functionality). The functions of a

gene product are the jobs that it does or the “abilities” that it has. These may

include transporting things around, binding to things, holding things together

and changing one thing into another [34].

• Right now, the algorithm removes all the gene whose expression value is

missing for at least one sample. It might be the case that the gene that we are

removing is an important and informative gene. We can try to estimate the

missing value based on the other known values.

We also need some way of finding the outliers in data. For example, in Figure

3.5, if we remove the value for the last sample, we might get better results.
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Appendix A

Other Heuristics

This chapter presents other hinge functions that we have tried for finding the subsets

of genes and samples (bi-clusters) from the data matrix. It also describes other

approaches for finding the bi-clusters that we have tested.

A.1 Hinge Functions

Given an n × p matrix M , we find two vectors, α and β, of size |α| = n and

|β| = p such that α.βT is the least square rank-1 approximation of M . Here, α

represents the gene’s vector and β represents the sample’s vector; see Chapter 3 for

more details. Our goal is to find a subset of genes and a subset of samples that have

similar patterns in these two vectors. Table A.1 provides prediction accuracy for

different models on breast cancer data.

In models 1 - 9, we sort the matrix, M , according to the values in α and β

vectors. Here is a brief explanation for these models:

• Model 1: In this model, we use the original α and β for matrix M . We

increase i from 1 to n for genes (500 at a time, because of the large number

of genes that we have in the microarray data), and j from 1 to p to get partial

matrix, Mpart, and partial vectors αpart and βpart. For each (i, j) we calculate
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the residual error between Mpart and αpart.βpart
T . Therefore, we have:

E = M(1..i, 1..j) − α(1..i).β(1..j)T
.

where E is the residual matrix. We used three different residual error calcu-

lations:

– (a): the largest eigenvalue of matrix E.

– (b): the sum of the square of the elements in the residual matrix E.

– (c): the second largest eigenvalue of matrix E.
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Figure A.1: Residual error (LEV/Matlab norm) for model 1.a.

The goal here was to find some i and j such that the residual error for i×j sub-

matrix is much smaller than for the next sub-matrix ((i+1)×j or i×(j+1)).
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Figure A.1 shows the residual error for breast cancer data using model 1.a

(using Matlab norm (LEV)). It is clear from the figure that we can not find

such i and j easily.

• Model 2: Similar to model 1, we increase i from 1 to n for genes (500 at a

time), and j from 1 to p to get partial matrix, Mpart. But at each step, we

calculate the best rank-1 approximation to this matrix, i.e. α′

part and β ′

part for

this partial matrix. Then we calculate the residual error at each step. Figure

A.2 shows the residual error for breast cancer data using model 2.a (using

Matlab norm (LEV)). We could not find such i and j from this figure either.
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Figure A.2: Residual error (LEV) for model 2.a.

We also considered variations of models 1 and 2, where instead of looking at

the largest eigenvalues in the residual matrix, we looked at the second largest eigen-

values in the residual matrix (divided by the size of the matrix). See Figure A.3.
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Figure A.3: Residual error, second largest EV for model 1.c.

In the next models, instead of looking at the partial matrices, we looked at the

vectors to find the bi-clusters. These approaches are similar to the algorithm in

Chapter 3, with different hinge functions for finding the bi-clusters.

• Model 3: This model is almost identical to the RoBiC, except that it uses the

absolute values in α and β vectors, i.e. use |α(s)| and |β(s)|, for finding the

best two lines for α(s) and for β(s) that fit into their values.

• Model 4: This model is also similar to RoBiC, but it approximates the values

in the patients vector and the genes vector by a single best line. That is, in

β(s) (the sorted patients vector), find the best fitting line for values β
(s)
1 to β

(s)
j ,

which has error ej .

ej = error(bestlinefor(β
(s)
1 , . . . , β

(s)
j ).

Then choose j, the separation point for patients, such that ej is minimum.

Therefore, the patients from index 1 to j are in the current bicluster, with

similar pattern that fits into a single line. Find the genes’ separation point, i,
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using the same procedure.

We also tried this approach by using the absolute values in the vectors as well.

• Model 5: In this model, we find the subset of samples first and then the subset

of genes. We have tried this approach using both exact values and absolute

values in α and β. We also tried it by approximating the vectors with two

lines or a single line. Here is the details of this model:

It approximates the values in the patients vector by a single best line (or two

lines), using the exact values (or absolute values) in α and β. This process

gives j, the separation point for patients. Therefore, the patients from index

1 to j are in the current bi-cluster. Subtract their values from the data matrix.

Now calculate α vector from this remainder matrix and choose the subset of

genes from this α, with the same function that finds the subset of samples.

Subtract the values of the genes in the current bi-cluster from the matrix and

repeat the process on the remainder of the matrix.

• Model 6: This model is very similar to the RoBiC, except that it find the best

two lines in α from index 1 to i and from i + 1 to i + 10. Similarly for β, it

finds the best two lines from 1 to j and j + 1 to j + 10. We did this to try to

avoid outliers.

• Model 7: This model is almost identical to the RoBiC, except that it uses the

the best two parabolas that fit into the values in α and β.

• Model 8: Find the separation points for genes and samples by finding the

average of the top 3 values in each vector. Then choose the genes and samples

whose values are higher than half of this average for each vector.

• Model 9: Find the separation points for genes, i, by finding the mean and

variance (µ and σ) for the second half of the genes in α. Then choose the

genes, whose values are more than µ + 10σ. Find the separation point for

samples, j, such that
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Model No. Breast Cancer
3.2. 75%
4.1.(e) 86.84%
4.1.(a) 86.84%
5.1.(e) 67.11%
5.1.(a) 96.05%
5.2.(e) 69.73%
5.2.(a) 69.73%
6.(e) 77.63%
6.(a) 75%
7 78.95%
8 69.74%
9 53.94%

Table A.1: Prediction accuracy for each model on breast cancer data, using a SVM
classifier, based on 5-fold cross-validation. The first number in “Model No.” is
the model number, the second number indicates the number of lines we used to
estimate the values in the vectors. The last element is either (e), which means we
used the exact values in the vectors for approximation, or (a) which means we used
the absolute values in the vectors. Model 1 and 2 are not presented in this table,
because we could not find the separation point for patients and genes.

‖M(1..i, j) − α(1..i).βj‖

is minimum.

Table A.1 shows the results for each model on breast cancer data.

A.2 Other Approaches

The section presents other approaches that we have tested. Table A.2 shows

the results for each approach on the breast cancer data.

• Approach 1: In the current RoBicC algorithm, we find the bi-clusters using

both the training set and the test set. Another possibility is to find the bi-
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clusters using the training set only. Then for each of the bi-clusters, B1, . . . , BK ,

build a classifier, C1, . . . , CK respectively, based on the expression values of

the genes in that bi-cluster. Now, when each new sample comes in (the test

set), run each classifiers C ∈ {C1, . . . , CK} on it to determine whether this

sample belongs to this bi-cluster. This produces a bit-vector for each new

sample. The rest of this model is the same as the bi-cluster classifier in Chap-

ter 4.

• Approach 2: This approach is similar to Approach 1 with added feature se-

lection. That is, find the bi-clusters for the training set. Use feature selection

to find a subset of genes for each bi-cluster (build the classifiers based on

these selected genes). Use these selected genes or the union of the selected

genes to predict if a new patient is in each bi-cluster or not.

• Approach 3: In RoBicC, we use the bi-clusters to reduce the dimensionality

of the data matrix. Instead, we can use the union of the genes in the found

bi-clusters to reduce the dimensionality. That is, we learn a classifier based

only on these genes in the union of all bi-clusters.

• Approach 4 (Compare to PCA (Principal Component Analysis)): In this

approach, we find K vectors for genes, for some user specific K ∈ N and

K ≤ min(n, p). Then we reduce the dimension of the data matrix, by map-

ping the data matrix based on the genes’ vector. That is,

[U, S, V ] = SV D(M)

– The data matrix, M , is n × p

– U is n × K with orthonormal columns,

– S is a diagonal matrix of eigenvalues in decreasing order and size K ×

K,

– V is p × K with orthonormal columns.
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Therefore, Mmapped = MT .U is a p × K matrix. We reduced the dimension

of the data matrix from n × p to p × K. Therefore, instead of having n

features for each sample, we have K features. Using 5-fold cross-validation,

we split the data into training set and test set. Now for each fold, we can learn

a classifier using the training set and K features, then predict the class labels

for the test set.

• Approach 5: In this approach we use SVD (Singular Value Decomposition)

[35] to find K eigenvectors for genes and samples at the same time (instead

of finding them one at a time from the residual matrix). Then we find the

subset of genes and samples from each of these vectors by fitting the two best

lines to the values in vectors. The result here is different from the RoBicC,

because the bi-clusters that RoBicC finds can have overlaps in both genes

and samples, when finding the kth bi-cluster, it considers data matrix that has

already subtracted away previous k−1 bi-clusters. But this approach does not

consider the interactions between bi-clusters, i.e. it does not subtract away the

values for genes and patients in each bi-cluster.

• Approach 6: For finding the subset of samples, instead of looking at the ele-

ments at the beginning of the vector, look at the elements at the start and end
of the vector. That is, find samples from index {1, . . . , j1} and {j2, . . . , p} in

α (by best line approximation, for example). As mentioned earlier, when we

find the β vector and sort it, most of the values at the beginning of the sorted

vector corresponds to a specific class of samples, and (most of) the values at

the end of the sorted vector corresponds to the other class of samples.

Then we can build the classifier matrix, R, such that each element rij of the

matrix is:

– 1 if the jth sample is in the kth bi-cluster, and j ∈ {1, . . . , j1}.

– −1 if the jth sample is in the kth bi-cluster, and j ∈ {j2, . . . , p}

– Otherwise, it is 0.
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We have tested this approach on the breast cancer data, using only 3 bi-

clusters, we get the prediction accuracy of 76%, which is better than the best

known published result.

Approach No. Breast Cancer
1 56.25%
2 73.75%
3 67.11%
4 59.21%
5 60.53%
6 76%
7 65.79%

Table A.2: Prediction accuracy for each approach on breast cancer data, using a
SVM classifier based on 5-fold cross-validation.

• Approach 7: In addition to all of these approaches, we tried 1-dimensional

clustering algorithms combined with classification algorithms, too. The best

prediction accuracy that we found for the breast cancer data is 65.79%, using

K-mean clustering (K = 2).
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Appendix B

Cross Cancer Institute Data

This project was started with a microarray data from the Cross Cancer Institute.

They were investigating the in-vivo effectiveness of a specific chemotherapy on

ovarian cancer. To do this, they recruited a cohort of ovarian cancer patients, and

collected two ascites samples from each – one taken before chemotherapy, and

one after. They then ran microarrays on each of these samples, each producing

expression levels for around 53, 000 genes. They currently have data for 9 patients,

5 of whom responded favorably to the chemotherapy.

They wanted to characterize the differences in expression level between:

1. pre- vs post- chemotherapy ascites samples;

e.g., seeking the genes whose expression level changed for all patients.

2. responders and non-responders;

e.g., seeking some patterns that indicate a specified subset of genes that are

interrelated for a subset of patients.

Before analyzing the data, we had to deal with the missing values in the data.

We removed the genes that their expression values were missing for at least one

patient. Then, the first task was done by comparing the differences between the

expression values before and after treatment for all the patients. Here we found a
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set of 5, 686 genes were found whose expression values changed for more than one

patient.

For the second task, we built the data matrix based on the differences in gene

expression levels before and after the treatment. Then we found the α and β vectors

for this data matrix. The top 5 values in β vector corresponds to the responder

patients and the bottom 4 values corresponds to the non-responders patients.

But the number of samples is very small in this dataset, therefore, we used

some publicly available microarray datasets in order to verify both the bi-clustering

algorithm and the bi-cluster classifier.
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