
Knowing What Doesn�t Matter�

Exploiting the Omission of Irrelevant Data�

Russell Greiner

Siemens Corporate Research

��� College Road East

Princeton� NJ ������		
�

greiner�scrsiemenscom

Adam J Grove

NEC Research Institute

� Independence Way

Princeton� NJ �����

grove�researchnjneccom

Alexander Kogan

Rutgers University

Faculty of Management and RUTCOR

Newark� NJ ����� and New Brunswick� NJ ����

kogan�rutcorrutgersedu

To appear in
Arti�cial Intelligence �tentatively� ������ �December ���	�

Abstract

Most learning algorithms work most e�ectively when their training data contain
completely speci�ed labeled samples� In many diagnostic tasks� however� the data will
include the values of only some of the attributes� we model this as a blocking process
that hides the values of those attributes from the learner� While blockers that remove
the values of critical attributes can handicap a learner� this paper instead focuses on
blockers that remove only conditionally irrelevant attribute values� i�e�� values that are
not needed to classify an instance� given the values of the other unblocked attributes�
We �rst motivate and formalize this model of �super�uous	value blocking�
 and then
demonstrate that these omissions can be useful� by proving that certain classes that
seem hard to learn in the general PAC model � viz�� decision trees and DNF formulae
� are trivial to learn in this setting� We then extend this model to deal with �� theory
revision �i�e�� modifying an existing formula�� ��� blockers that occasionally include
super�uous values or exclude required values� and ��� other corruptions of the training
data�

Keywords� irrelevant values� blocked attributes� learnability� decision trees� DNF�
diagnosis� theory revision� adversarial noise

�This is an extended version of the short conference paper �GGK���� We gratefully acknowledge receiving
helpful comments from R� Bharat Rao� Tom Hancock� Dan Roth� Dale Schuurmans and George Drastal�
and from the anonymous reviewers� The third author gratefully acknowledges the partial support of ONR
�Grants N			
����J
��� and N			
����J�	����

�

Knowing What Doesn�t Matter �

� Introduction

A diagnostician typically performs only a small fraction of all possible tests� furthermore� the
choice of which tests to perform depends on the results of the tests performed earlier in the
diagnosis session
 As an example� Knowing that a certain positive blood test x� is sucient
to establish that a patient has diseaseX� a doctor can conclude that a patient has diseaseX
after performing only test x�� if that test result is positive
 In recording his �ndings� the
doctor will only record the result of this one test hx�� �i and the diagnosis diseaseX
 N�b��
the doctor does not know� and therefore will not record� whether the patient has symptoms
corresponding to tests x�� x�� � � � � xn

A learner �a medical student� perhaps� may later examine the doctor�s �les� trying to learn

the doctor�s diagnostic procedure
 These records are quite �incomplete�� in that the values
of many attributes are missing� e�g�� they do not include the results of tests x� through xn on
this patient
 However� within this model� the learner can use the fact that these attributes
are missing to conclude that the missing tests are not required to reach a diagnosis� given
the known values of the other tests
 Hence� these omissions re�ect the fact that the doctor�s
classi�er �which the learner is trying to learn� can establish diseaseX and terminate on
observing only that x� is positive

This paper addresses the task of learning in this context� when each training sample

speci�es the values for only a subset of the attributes� together with that sample�s correct
class� with the understanding that the supplied values are �a minimal set that is� sucient
to classify this sample
 Of course� this framework requires that a helpful �teacher� �e�g��
the doctor mentioned above� specify the appropriate values for all�and�only the �relevant�
attributes
 We will see that this relevance information can be extremely useful� as it greatly
simpli�es the learner�s task of correctly identifying the teacher�s classi�er

Having such a helpful teacher is a very strong requirement� but there are situations �such

as this medical example� where it seems fairly plausible
 Furthermore� in later sections of
this paper we weaken the basic assumption of a very helpful teacher by allowing for various
�noise� processes� and show that many of the positive results continue to hold
 Note also
that missing values are ubiquitious in the �real world� data� and irrelevance is often one of
the factors causing these omissions
 Given our results� which demonstrate the huge potential
gains possible for learning systems that can exploit such �meaningful� omissions� it seems
unrealistic to ignore this possible cause� and in e�ect assume that missing data can only be
harmful
 We hope that our initial results will inspire research into yet more realistic and
useful models

After Section � presents our formal model� Section � shows how easy it is to learn �rst
decision trees� and then arbitrary DNF formulae� within this framework
 By contrast� neither
of these two well�studied classes is known to be learnable using completely�speci�ed training
samples
 Section � then presents a variety of extensions to this basic model� to make it both
more general and more robust� dealing with� ��� the theory revision task �i�e�� modifying an
existing formula�� ��� degradations in the training data �i�e�� data which occasionally includes
super�uous values or excludes required values�� and ��� other corruption processes� such as
classi�cation noise and attribute noise
 The Appendix presents the proofs of all theorems

We close this section by further motivating our framework and describing how it di�ers from

Knowing What Doesn�t Matter �

related work on learning from incomplete data

Motivation and Related Work� Most implemented learning systems tend to work e�ec�
tively when very few features are missing� and when these missing features are randomly
distributed across the samples
 However� recent studies �PBH��� RCJ��� have shown that
many real�world datasets are missing more than half of the feature values� Moreover� these
values are not randomly blocked� but in fact �are missing �blocked� when they are known to
be irrelevant for classi�cation or redundant with features already present in the case descrip�
tion� �PBH���� which is essentially the situation considered in this paper �see De�nition ��

Towards explaining this empirical observation� note that a diagnosis often corresponds to
a single path through an n�node decision tree and so may require only a small number of
tests� the remaining test values are simply irrelevant
 Our model of learning can� therefore�
be applicable to many diagnostic tasks� and will be especially useful where the experts are
unavailable or are unable to articulate the classi�cation process they are using

Turney �Tur��� discusses a model that also assumes that experts intentionally perform

only a subset of the possible tests
 His model allows the system to use test�cost to decide
which tests to omit
 By contrast� in our model� the environment�teacher uses test�relevance
to decide which tests to present

While there are several learning systems that can handle incomplete information in the

samples �cf�� �BFOS��� Qui��� LR�	��� they all appear to be based on a di�erent model
�SG�	� SG���� after the world produces a completely�speci�ed sample at random� a second
�blocking� process �which also could be �nature�� hides the values of certain attributes at
random
 Here� no useful information is conveyed by the fact that an attribute is hidden in
a particular example

Although the model in this paper also assumes that a random process is generating

complete tuples which are then partially blocked� our model di�ers by dealing with blocking
processes that �try to� block only �irrelevant� values� i�e�� attributes whose values do not
a�ect the instance�s classi�cation
 More speci�cally� in our model the blocked values are
super�uous or conditionally irrelevant� that is� given the unblocked values we see� the blocked
values are not able to a�ect the classi�cation
 For example� if the doctor would conclude
diseaseX when x� is positive� whether x� is positive or negative� then �x� is super�uous
given that x� is positive�
 Of course� if x� is negative� other tests may then be relevant
for the diagnosis� perhaps a negative x� and a positive x� will be sucient to establish
diseaseX� etc
 John et al� �JKP��� would therefore consider x� to be �weakly irrelevant�� by
contrast� they say an attribute is �strongly irrelevant� if its value never plays a role in the
classi�cation� under any circumstance �i�e�� independent of the values of any other attributes��
cf�� �Lit��� Blu��� BHL���
 Our situation di�ers from these models� as we assume that the
environment explicitly identi�es weakly irrelevant �i�e�� super�uous� attributes

Similarly� Russell and others �Rus��� MT��� say a set of attributesX �determine� another

attribute y if any assignment to members of X is sucient to specify the value for y� i�e��
all other �non�X� attributes are irrelevant
 Our model� however� allows y�s value to be
�determined� by di�erent sets of attributes in di�erent situations

Our �nal comments help to place our model within the framework of existing computa�

tional learning results� First� in our model� certain attribute values are omitted� this di�ers
from the problem of unsupervised learning� in which the class label is omitted �SD��� Chap�

Knowing What Doesn�t Matter �

�RealWorld

Sample Generator

P ���
�

h�x� ���x�i

hh � �i� T i

Blocker
�

�
h���x�� ���x�i

hh � � �i� T i

�
�

�
�

Learner

��
Classi�er�� ��

��� ��R���� �� ��
��� ��R�� �� �� ��

� �
�Instance �x is unlabeled� unblocked�

�x
�
�

Yes
No

Figure �� Blocking Model

ter ��� and from problems in which some attribute values are changed �SV��� Lit��� GS���

Second� as our blocker is providing additional information to the learner� its role is similar
to that of a benevolent teacher
 However� other teaching models� such as Goldman and
Mathias �GM���� allow the teacher to present arbitrary instances to the learner� without
regard to an underlying real�world distribution
 By contrast� our blocker�teacher is forced
to deal with the instances selected by the distribution� but can help the learner by declaring
certain attribute values� within those instances� to be conditionally irrelevant

� Framework

Following standard practice� we identify each domain instance with a �nite vector of boolean
attributes �x hx�� � � � � xni
 Let Xn f�� �gn be the set of all possible domain instances

The learner is trying to learn a concept �� which we view as an indicator function � �Xn ��
fT�Fg� where �x is a member of � i� ���x� T
 We assume the learner knows the set
of possible concepts� C
� A ��labeled� example of a concept � � C� is a pair h�x� ���x�i �
Xn � fT�Fg
 We assume there is a stationary distribution P � Xn �� ��� �� over the space
of domain instances� from which random labeled instances are drawn independently� both
during training and testing of the learning algorithm

To continue the earlier example� suppose the �rst attribute x� in the instance �x

hx�� � � � � x�i corresponds to the blood test and the subsequent attributes x�� x� and x� corre�
spond �respectively� to particular tests of the patient�s bile� melancholy and phlegm
 Then
the instance h�� �� �� �i corresponds to a patient whose blood test was negative� but whose
bile� melancholy and phlegm tests �x�� x� and x�� were all positive
 Assume that the con�
cept associated with diseaseX corresponds to any tuple hx�� � � � � x�i where either x� �
or both x� � and x� �
 Hence labeled examples of the concept diseaseX include
hh�� �� �� �i� T i� hh�� �� �� �i� T i� hh�� �� �� �i� T i� and hh�� �� �� �i� F i
 Further� P ��x� speci�es
the probability of encountering a patient with the particular set of symptoms speci�ed by

�To simplify our presentation� we will assume that each attribute has one of only two distinct values�
f	�
g� and that there are only two distinct classes� written fT� Fg� It is trivial to extend this analysis to
consider a larger ��nite� range of possible attribute values� and larger ��nite� set of classes�

Knowing What Doesn�t Matter �

�x� e�g�� P �h�� �� �� �i� ���� means �! of the time we will deal with a patient with positive
blood and melancholy tests� but negative bile and phlegm tests

In general� a learning algorithm L has access to a source of labeled examples h�x� ���x�i�

drawn randomly and independently according to the distribution P and labeled by the target
�unknown� concept � � C
 �When we consider the computational complexity of a learning
algorithm L� we can assume that L takes constant time to draw each new labeled example
�
L�s output is a hypothesis h � Xn � fT�Fg
 In many cases� one does not require that h � C�
it usually suces that h be evaluable in polynomial time
 We discuss below how this model
relates to our model of blocking� and then discuss how we evaluate L

Model of �Blocked Learning�� In standard learning models� the learning algorithm
gets to see each randomly�drawn labeled instance h�x� ���x�i �as is�
 In this paper we also
consider learning algorithms that only get to see a �blocked version� of h�x� ���x�i� writ�
ten �h���x�� ���x�i�
 A blocker � � Xn � f�� �� �gn replaces certain attribute values by the
�blocked� �or in our case� �don�t care�� token ���� but otherwise leaves �x and the label
���x� intact� see Figure �
� Hence� a blocker could map hh�� �� �� �i� T i to h��h�� �� �� �i�� T i
hh�� �� �� �i� T i� or h��h�� �� �� �i�� F i hh�� �� �� �i� F i� but no such blocker can map hh�� �� �� �i� T i
to any of hh�� �� �� �i� T i� hh�� �� �� �i� T i� or hh�� �� �� �i� �i
 Let X�

n f�� �� �gn denote the set
of possible instance descriptions

This paper considers super�uous�value blockers� i�e�� blockers that only block attribute

values that do not a�ect an instance�s classi�cation� given the values of the other unblocked
attribute values
 To state this more precisely�

De�nition � ��Super�uous�	 Let � � C be a concept over attributes fx�� � � � � xng� Then�

	
� A subset of attributes� say fxm��� � � � � xng� is super�uous given a particular assignment
to the remaining values fx� �� v�� � � � � xm �� vm g i� for any assignment xm�� ��
vm�� � � � � xn �� vn�

��v�� � � � � vm� � � � � vn� ��v�� � � � � vm� �� � � � � ��

That is� the values given to the super�uous variables do not aect the classi�cation�

	�� A function � � Xn �� X�
n is a super�uous value blocker if it only blocks super�u�

ous attributes� i�e�� whenever ��hv�� � � � � vni� hv�� � � � � vm� �� � � � � �i then the attributes
fxm��� � � � � xng are super�uous given the partial assignment fx� �� v�� � � � � xm �� vm g�

For example� ��h�� �� �� �i� h�� �� �� �i is allowed only if all four instances h�� �� �� �i�
h�� �� �� �i� h�� �� �� �i� and h�� �� �� �i have the same classi�cation

Note that there is a di�erence between being super�uous and being redundant
 If an

attribute is redundant " meaning that its value is determined once certain other attributes�
values are speci�ed " then it is also super�uous given these other values
 Note� however�
that the converse is not necessarily true

�This is a slight abuse of notation� as � may be stochastic� see the discussion in Section ��� This caveat
also applies to De�nition
�

Knowing What Doesn�t Matter �

While De�nition � allows �blockers� that never blocks any attribute values� we will see
later that the interesting results in this paper apply only to cases in which a large subset of
the possible super�uous attributes are blocked

To motivate our model� consider the behavior of a classi�er dt using a standard decision

tree� �a la cart �BFOS��� or c��� �Qui���
 Here� given any instance� dt will perform �and
record� only the tests on a single path through the tree
 The other variables� corresponding to
tests that do not label nodes on this path� do not matter� dt will reach the same conclusion
no matter how we adjust their values
 Similar claims hold for many other classi�cation
structures� including decision lists and the rule sets produced by c���
 Section �
� extends
this idea to general DNF formulae

Performance Criterion� To specify how we will evaluate the learner� we �rst de�ne the
error of the hypothesis h returned by the learner �for a given set of samples drawn from
distribution P overXn and labeled according to concept �� as Err�h� P ��x � ���x� � h��x���
i�e�� the probability that h will misclassify an instance �x drawn from P

We use the standard �Probably ApproximatelyCorrect� �PAC� criterion �Val��� KLPV�	�
to specify the desired performance of our learners

De�nition
 �PAC�learning	 A learning algorithm L PAC�learns a set of concepts C if�
for some polynomial function p�� � ��� for all target concepts � � C� distributions P over Xn�
and error parameters �� � � �� L runs in time at most p��

�
� �
�
� j�j�� and outputs a hypothesis

h whose error is� with probability at least �	 �� less than �� i�e��

P � �distributions on Xn�� � � C� �� � � �� P � Err�h� 	 � � � �	 � �

In this de�nition� j�j is the �size� of the concept � �de�ned below�
 To understand the
condition involving �P �Err�h� 	 ���� recall that a learning algorithm� by de�nition� has
access to labeled training examples drawn randomly according to P
 Thus the output� h� of
L is typically probabilistic� with a distribution induced from P because it depends on the
particular training examples that were seen
 So by allowing L to return a �bad� hypothesis
with probability � we allow for cases in which L happens to see an unrepresentative training
sample
 Next� note that the number of instances seen by L can be at most L�s running time�
and thus is also polynomial in �

�
� �
�
and j�j
 Finally� notice that the learner is expected to

acquire a classi�er that has high accuracy on completely speci�ed instances� even if it was
trained on blocked values
 This is reasonable� as we are assuming that� after learning� the
classi�er �read �doctor�� is in a position to specify the tests to be performed
 �Of course� such
a complete�value classi�er can trivially classify any instance whose super�uous values were
removed� As these attributes are irrelevant� the classi�er can simply replace each omitted
attribute with� say� �
�
We later consider a stronger learning model� called mistake�bound learning �Lit���� which

is used to evaluate learning algorithms that are used in an on�line fashion
 Here� the learner
successively draws random unlabeled samples and must guess the correct label� it is then
told the right label
 If we can bound the total number of incorrect guesses made� over any
sequence of drawn examples� then the algorithm is said to exhibit an �absolute� mistake
bound
 We will provide mistake bounds for some of our algorithms
 Note however that this
on�line model seems rather unnatural in our setting� as it seems unlikely that we would get

Knowing What Doesn�t Matter 	

the relevance information for each instance� but not its class label
 �E�g�� in our motivating
example of a medical student examining doctor�s records� why would the doctor� who is
blocking each instance appropriately� not supply the label#�

Notation� The concept classes of most interest to us are decision trees and disjunctive
normal form �DNF� formulae
� We use DT n�s to denote the set of decision trees de�ned over
the n boolean variables x�� � � � � xn� with at most s leaf nodes�� further� DT n

S
sDT n�s is

the set of all decision trees over x�� � � � � xn
 For any decision tree d � DT n� we let jdj be
the number of leaf nodes in d
 Let DNFn�s be the set of DNF formulae� over the n boolean
variables x�� � � � � xn� with at most s terms� and let DNFn

S
sDNFn�s be the set of all

DNF formulae over x�� � � � � xn
 For any DNF formula � � DNFn� j�j is the number of terms
in �
 Finally� for constant k� k�DNFn is the class of DNF formulae whose terms include
at most k literals
 Similarly� a formula in �c log n��DNFn is a disjunction of terms� each of
which has at most c log n literals

� Learning Decision Trees and DNFs� Simple Cases

This section discusses the challenge of learning two standard classes of concepts within our
�super�uous blocking model�� decision trees �Subsection �
�� and DNF formulae �Subsec�
tion �
��
 Section � later presents several extensions and variations of these situations

��� Learning Decision Trees

In this section� we suppose that a learning algorithm is given training samples that are both
labeled and blocked using a target decision tree dt� the learner�s task� then� is to recover
dt
 To be speci�c� we assume that the blocking process �dt does the following� Given a
complete instance �x hx�� � � � � xni� �dt traverses the decision tree dt from the root down�
recording all �and only�� the tests that were performed in this traversal� as well as the
�nal classi�cation from fT�Fg
 Thus� the reported tests correspond exactly to some path
through dt
 All attributes not on the path are blocked� and so are reported as ���
 We
consider below learning decision trees under this particular blocking model� which we call
the �B�DT � learning model�

For example� imagine that a doctor was using the d� decision tree shown in Figure ��

in which he descends to a node�s right child if the node�s test is positive� and goes to the
left child otherwise
 Given the complete instance hx�� x�� x�� x�� x	� x
i h�� �� �� �� �� �i� the
doctor �using d�� will �rst perform test x� and as it fails� descend to the left� to the node
labeled x�
 As this x� test succeeds� d� reaches a leaf node� labeled F
 Here� the learner will
see

h�d��h�� �� �� �� �� �� �i�� d��h�� �� �� �� �� �� �i�i hh�� �� �� �� �� �i� F i�

�A DNF formula is a disjunction of terms� where each term is a conjunction of literals� where each literal
is either positive �x� or negative ��x�� e�g�� � � �x� �x�� � �x�x� �x�� � �x�� is a DNF formula�

�Throughout this paper� we restrict attention to decision trees in which each internal node tests a single
variable� branching according to whether the variable has value 	 or
�

Knowing What Doesn�t Matter �

d�

x�
�
�
�
��

�
�

��

Q
Q
Q
QQ

x�
�
�
�
�

�
�

�
�

x�
�
�
�
�

�
��

�
��

F T

F

x�
�
�
�
�

�
�

�
�

x�
�
�
�
�

�
��

A
AA

F T

x

�
�
�
�

�
��

�
��

F T

Figure �� Decision Tree� d�

Alternatively� given the instance h�� �� �� �� �� �i� the learner will see h�d��h�� �� �� �� �� �i��
d��h�� �� �� �� �� �i�i hh�� �� �� �� �� �i� T i
 Note that two trees can be logically equivalent
�i�e�� encode the same classi�cation function�� but produce di�erent blocking behavior

There is currently no known algorithm capable of learning decision trees in the standard
PAC model
	 There is� however� a simple algorithm that can learn decision trees from these
blocked instances in the B�DT � model
 If the target decision tree is believed to consist of no
more than s leaves� the Learn�DT�n� s� �� �� algorithm �rst draws a sample of

mDT �n�s
�

�

�
s ln��n� $ ln

�

�

�
���

random �blocked and labeled� training examples� and then calls the Build�DT algorithm
�shown in Figure ��� which builds a decision tree that correctly classi�es this sample
 Build�
DT �rst selects as the root any attribute value that is never blocked� then splits on this
attribute� calling itself recursively
 To understand why Build�DT works� observe that
�i� the root of the target tree can never be blocked and �ii� any variable that is never
blocked appears on the path to every leaf reached by the sample and hence can be placed at
the root without penalty

Theorem �

Learn�DT�n� s� �� �� PAC�learns decision trees in DT n�s under the B�DT �

blocking model� That is� for any d � DT n�s� any values of �� � � ��� �� and any distri�
bution over instances P � Learn�DT�n� s� �� �� will return a tree d� � DT n�s whose error
	on unblocked� unlabeled instances� is� with probability at least � 	 �� at most �� Moreover�
Learn�DT requires O� s

�
ln n

�
� blocked labeled samples and returns a tree of size jd�j � jdj�

When used in an on�line fashion� Learn�DT exhibits a mistake bound of s�

While this algorithm is parameterized by the size of the tree s� it is possible to use the
standard technique of repeated attempts� with successively doubled estimates of s �HKLW����
to produce an algorithm that does not have to know s in advance
 Here� the learning
algorithm Learn�DT

� �rst draws a set of samples based on the assumption that s ��

�The most general known algorithms run in pseudo�polynomial time� i�e�� they learn an s�leaf decision
tree in time polynomial in sO�log s� �EH��� Riv����

	All proofs are in the Appendix�

Knowing What Doesn�t Matter �

Algorithm Build�DT� S� set of labeled blocked samples �� DT Type

�� Builds a tree using labeled blocked samples S ��
Let NT be a new tree

If �S is empty� Then

NT�LeafLabel � F

Return� NT �

If �all samples in S are labeled with same label� �� Then

NT�LeafLabel � �

Return� NT �

Let xi be any variable that is unblocked for every sample in S�

Let S� � f h�x�i� �i g j h�x� �i � S� �xi � �g
S� � f h�x�i� �i g j h�x� �i � S� �xi � g

�� I�e� to form S�� Assemble the instances in S such that xi � �� and project out xi�
�Here	 �x�i denotes the tuple �x with the i
th component removed��
S� is constructed analogously	 from those instances with xi � � ��

Let NT�InternalNodeLabel � xi
NT�If� � Build�DT� S� �

NT�If� � Build�DT� S� �

Return� NT �

End Build�DT

Figure �� Build�DT Algorithm for learning decision trees� in B�DT � Model

then calls Build�DT on this set
 The resulting tree is accepted if it has � leaf� otherwise�
Learn�DT

� draws a set of samples based on s �� calls Build�DT� and accepts the tree
if it has at most � leaves
 If not� it successively tries s �� s �� s ���

 � until it
succeeds
 An argument similar to the one given in the proof of Theorem � shows that �with
high probability� Learn�DT� will succeed once s is large enough
�

��� Learning DNF Formulae

This subsection considers learning arbitrary DNF formulae �a class that signi�cantly gen�
eralizes decision trees� when super�uous values are omitted
 Here� each blocked positive
instance is simply an implicant of the target formula �� and each blocked negative instance
is an implicant of the target�s negation �
 However� while decision trees have an obvi�
ous �evaluation procedure� which describes the particular implicant to use� there are many
di�erent ways of specifying which implicant should be returned when considering DNF for�
mulae
 For now� we focus on the model that most closely resembles the B�DT � model for
decision trees

BlockingModel� Given any decision tree t� a logically�equivalent DNF formula �t contains�
as terms� the �conditions� of the paths �from the root� to each T �labeled leaf node n�� where

Actually� Learn�DT� will have to request slightly more than Equation
�s mDT �n�s samples when con�
sidering each value of s� as it has to consider the possibility of making a mistake on any of the log�n� � n

values of s� see �HKLW�
��
�I�e�� every poly�sized decision tree is logically equivalent to a poly�sized DNF formula� but not vice versa�

Knowing What Doesn�t Matter ��

the �condition� of the path hn�� � � � � n�i is the conjunction of the variables of the nodes ni�
whose sign �either xi or %xi� is determined by whether ni�� is ni�s $�child or 	�child
 For
example� a DNF formula corresponding to Figure ��s d� is

�d� � %x�%x�x� � x�%x�x� � x�x�x
 �

Notice that� given any positive instance� the �d� blocker would leave unblocked the variables
of exactly one of these terms

In general� given an arbitrary target DNF formula � t��� � �� ts� we de�ne a �� blocker

as any blocker that acts in the following way�

� Given a positive instance h�x� T i� �� leaves unblocked exactly the variables of one of
the terms in � that �x satis�es �i�e�� ����x� returns some tj such that tj evaluates to true
under �x�

� Given a negative instance h�x� F i� ����x� is an implicant of � constructed from �x
 That
is� for each ti� there is at least one unblocked variable from �x in ����x� that appears
with the opposite sign in ti

We let the term �B�DNF � learning model� refer to learning DNF concepts �� under ��
blocking
 Although the notation suggests that �� is functional� there might be several
distinct terms ti that the blocker could return for a given positive instance �x� whenever �x
is implied by several terms in �
 None of our later results change if the blocker chooses
among the possibilities stochastically� so long as the choice process is stationary for positive
instances
 For negative instances we do not even require stationarity

Of course� many blockers are deterministic
 For example� the natural blocker for a

decision tree �which is a special case of DNF formula� deterministically returns the conditions
of the unique path traversed evaluating an instance
 It is easy to extend this idea to de�ne
a deterministic blocker for any DNF formula
 For instance� consider a blocker that imposes
a speci�c order on the terms in the given DNF formula� and also an order on the literals
within each term
 Then given a positive instance �x� this blocker examines the DNF terms
in the given order until �nding one that is satis�ed� and then returns this term
 For each
negative example �x� this blocker collects literals by walking through the terms� and for each
term� including the �rst variable that occurs with opposite sign to its appearance in �x

This particular blocker has the property that� given any s�term DNF formula� it will leave
unblocked at most s literals for each negative example
 We will see that our results hold
even if the blocker returns �too many� unblocked literals on negative examples

Learning DNF Formulae� under Blocking� There is a trivial algorithm� called �Learn�
DNF�� that can PAC�learn s�term DNF formulae in this B�DNF � model
 Learn�DNF

simply requests

mDNF �n�s
�s

�
ln
s

�

samples� then forms a DNF formula by disjoining the observed positive samples
� Hence�

�Notice that this approach resembles simple �table learning�� and so can be considered related to
case�based and nearest�neighbor algorithms� It di�ers� of course� in that each of the training examples
�a�k�a� �cases�� �neighbors�� is given to us in an appropriately generalized form� which means that we can
use simple subsumption to decide whether each such training example �covers� a test instance�

Knowing What Doesn�t Matter ��

Theorem
 Learn�DNF�n� s� �� �� PAC�learns DNFn�s under the B�DNF � blocking model�
That is� for any � � DNFn�s� any values of �� � � ��� �� and any distribution over instances
P � Learn�DNF�n� s� �� �� will return a DNF formula �� � DNFn�s whose error 	on un�
blocked� unlabeled instances� is� with probability at least �	 �� at most �� Moreover� Learn�
DNF requires O� s

�
ln s

�
� blocked labeled samples� and will return a DNF formula with at most

j�j terms� Notice also Learn�DNF uses only positive samples� When used in an on�line
fashion� Learn�DNF exhibits a mistake bound of s�

By contrast� learning arbitrary DNF formulae in the standard model is one of the major
open challenges of PAC�learning in general �Ang���

Many learnability results are expressed in terms of the size of the smallest DNF formula
for a concept
 However� our result deals explicitly with the speci�c formula that the environ�
ment �a
k
a
 �teacher�� is using� and hence our results are of the form �the computational
cost is polynomial in the size of the formula considered�
 Unfortunately� this formula could
be exponentially larger than the smallest equivalent DNF formula
 Also� while Learn�DNF
�and Theorem �� require a bound s on the size of the target formula� we can avoid this by
using the already�mentioned technique of successively doubling estimates of s

Other blocking models� We close this section by noting that B�DNF � is not the only
natural blocking model that might be considered for DNF formulae
 We earlier mentioned
a particular type of B�DNF � blocker that examines the terms of a DNF formula one�by�
one in some �xed order� stopping when it �nds a term that satis�es the given instance
 For
example� such a blocker for the concept � %x�x� � x	%x� � x�x� � x�%x	x
� given the instance
x�x�x�x�x	x
� would return x�x�
 Imagine� however� a doctor was actually evaluating this
formula by considering its terms in this order
 To evaluate %x�x�� he would test x�� and
�nding that x� �� reject the �rst term
 On the second term� he would �rst test x	� and as
x	 �� proceed to examine x�
 As x� �� he would then reject the second term and reach
the third term
 On con�rming that x� � and x� �� he would return T
 As the doctor has
now performed the tests fx�� x�� x�� x�� x	g� it may make sense for him to record all of this
information� even though only a subset was actually necessary for the �nal classi�cation
 In
contrast� our B�DNF � blocks more� here� it would return just x� � and x� �� as these
reasons �attributes� are sucient to support the positive classi�cation
 Hence� our model is
appropriate if the doctor is required only to provide the evidence that justi�es his decision

Some apparently di�erent blocking models actually �t within our framework
 For exam�
ple� imagine there are several di�erent �teachers�� each with his own �syntactically� distinct�
but logically equivalent� DNF formula� and each example is blocked according to one of these
formulae �perhaps chosen at random�
 While this may appear to be a di�erent notion of
blocking� we can treat it as an ordinary instance of B�DNF � blocking� albeit with a formula
formed by disjoining the experts� individual formulae
 While the learner may produce a
formula that is unnecessarily long �because it is learning from redundant sources�� no other
special treatment is required
 We can similarly use this technique to handle multiple decision
trees� although we will learn a DNF formula rather than a decision tree

Another case where the standard B�DNF � blocker turns out to be sucient occurs with
certain blockers that block even more than the B�DNF � model does
 Consider a blocker that

Knowing What Doesn�t Matter ��

presents a minimal amount of information needed to determine the label� i�e�� by presenting
the learner with just prime implicants
 �An implicant is prime if no proper subset of its
literals is an implicant
� Such a blocker might �rst select a suitable term from the target
DNF formula �� and then remove from the term some literals that are not essential for the
classi�cation� and �nally returning the resulting prime implicant
 For example� given the
target formula � x�%x� � x�x�� and instance �x h�� �i� such a blocker could just return
h�� �i because the value of x� is� in fact� irrelevant here
 Notice that a term in � may be
subsumed by many di�erent prime implicants " in fact� exponentially many
�� Even if the
blocker gets to choose among these prime implicants� possibly returning a di�erent prime
implicant every time an instance satis�es a particular term� the learning task remains easy

In fact� exactly the same Learn�DNF algorithm and the same Theorem � bound remain
valid� as the formula produced in this case is subsumed by �� and it will clearly subsume the
formula produced using the standard �� blocker� for the same set of training samples

� Extensions� Theory Revision� Degradation� Noise

This section presents a variety of extensions to our basic �super�uous value� model� to make
it both more general and more robust
 Subsection �
� �rst considers the situation where the
learner begins with an initial classi�er� which it modi�es in light of new examples
 The other
subsections discuss ways to make our model more robust to �teacher error�
 Subsection �
�
models �degraded blockers� that occasionally exclude certain required attribute values� or
include some super�uous values� and then provides algorithms that can cope with certain
ranges of such corruptions� Subsection �
� similarly analyzes classi�cation and attribute noise
within our framework

��� Theory Revision� Improving a given Initial Classi�er

In many situations� we may already have an initial theory �init �which may be either a
decision tree or a DNF formula� that is considered quite accurate� but not perfect
 This
subsection describes ways of using a set of labeled samples to improve �init� i�e�� to form
a new theory �better that is similar to �init� but is �with high probability� more accurate

We let B
�DNF �
TR refer to this model �for DNF formulae� where the TR designates �Theory

Revision�� corresponding to the many existing systems that perform essentially the same
task� albeit in the framework of Horn�clause based reasoning systems� cf�� �Tow��� WP���

MB��� OM��� LDRG���
 After this� we consider theory revision for decision trees� B�DT �
TR

There are several obvious advantages to theory revision over the �grow from scratch�
approach discussed in the previous section
 First� notice from Theorem � that the number
of samples required to build a DNF formula is proportional to the size of the �nal formula�
which can be exponential in the number of attributes
 So� given only a small number of
labeled samples� we may be unable to reliably produce an adequate theory� much less the

�For example� consider � �
Wn

i���xi�yi � �xiyi� � �
Vn

i�� xiyi�� and notice that the �nal term is subsumed
by any of the n prime implicants of the form

Vn

i��fxi or yig� where each �fxi or yig� denotes a single literal
which is either xi xor yi�

Knowing What Doesn�t Matter ��

Algorithm Modify�DNF� �init � DNF Type	 n� r � N	 �� �� � � ��� � �� DNF Type

Draw mr �
�r
�� ln

�r
� training �blocked� labeled� samples

�� Alternatively	 if � is not known a priori	 we can instead collect �r
� ln �r

� samples
that �init does not label correctly �i�e�	 either mislabels	 or is unable to label��� ��

Let S� � positive samples that �init either can
t classify or classifies as F	

S� � negative samples that �init either can
t classify or classifies as T�

Let T � S� � �init�

�� I�e�	 T includes both un� and mis�classi�ed positive examples	 and the terms from �init� ��
Remove from T any term that is consistent with some term in S��

�� E�g�	 the negative example x��x� � S� will remove from T the terms x� and �x�x		
but not �x�x� ��

Return disjunction of terms in T�

End Modify�DNF

Figure �� The Modify�DNF algorithm for modifying an initial DNF formula

optimal one
 We show below that this same set of samples may� however� be sucient to
specify how to improve a given initial theory

Stated more precisely� we assume our initial theory �init � DNFn has classi�cation error

 Pr��init&�cor �� where �cor is the correct target theory and

�init&�cor f �x j ��init��x� � �cor��x�� � ��init��x� � �cor��x�� g

is the symmetric set di�erence between instances satis�ed by �init versus �cor
 Our goal
is to produce a new theory �� � DNFn whose error is� with probability at least � 	 �� at
most � �

 We want to do this using a number of samples that is polynomial in ��
� ����
ln ����� and in some measure of the �di�erence� between our current theory and �cor
 For
this purpose� we use the measure�

r��cor� �init� j�cor 	 �initj $ j�init 	 �corj

which is the syntactic di�erence between �init and �cor " i�e�� the total number of terms that
must be either added to� or removed from� �init to form the desired �cor
 �Of course� this
��cor	�init� is the set�di�erence between the set of terms in �cor and the set in �init
� Here�
we assume that each complete sample is drawn at random from a stationary distribution�
then blocked according to the ��cor

blocker �i�e�� the blocker based on the target �cor formula�

We can achieve this task using the Modify�DNF algorithm shown in Figure ��

Theorem Given any target s�term DNF formula �cor � DNFn�s� let �init � DNFn be an
initial formula whose syntactic dierence is r r��cor� �init� and whose classi�cation error
is
 Pr��cor&�init � � �� Then� for any values of �� � � ��� �� and any distribution
P � under the B�DNF � model using the ��cor

blocker� Modify�DNF��init� n� r�
� �� �� will

��For example� notice the initial concept �init � x�x� is unable to label the blocked instance h
� �� �i� as
it would label the h
�
� �i extension �T�� and the h
� 	� �i extension �F�� This h
� �� �i instance could be the
result of blocking the h
�
� 	i instance using the blocker for the target concept �cor � x� � x��

Knowing What Doesn�t Matter ��

return a formula �� � DNFn� s�r� whose error 	on unblocked� unlabeled instances� is� with
probability at least �	�� at most
��� Moreover�Modify�DNF requires O� r

��
ln r

�
� blocked

labeled samples�

This resulting �� formula agrees with each training sample seen� i�e�� if Modify�DNF

used the sample h�x� T i� then ����x� T � and if Modify�DNF used h�x� F i� then ����x� F

Note that Modify�DNF�s sample complexity does not depend on s� but rather on r�

which could be much smaller than s
 On the other hand� Modify�DNF�s computational
complexity does depend on s� as it has to consider all of �init�s terms� and there could be as
many as s$ r of these

If we did not know r in advance� we can use the standard iterative doubling technique

to �nd an appropriate value
 If so� it may make sense to run this Modify�DNF algorithm
in parallel with Learn�DNF� and stop as soon as either algorithm �nds an acceptable
candidate theory
 The sample complexity of the resulting pair�of�algorithms is linear in
minfr� sg� which could be a big advantage if� for example� r was exponentially larger than s
�which would happen if �init includes an exponential number of terms� and �cor includes only
a polynomial number�
 This would allow us to avoid wasting �many� samples �unlearning�
�init

Our sample complexity has the same O� r

�
ln r� form that Mooney provides in �Moo����

for revising a theory using completely speci�ed training examples �i�e�� his theory revision
system does not have access to our very�helpful teacher� which provides the �relevance�
information�
 His result� however� deals with the task of �nding a distance�r theory �i�e��
a theory within a syntactic distance of r from the current theory� whose error is under ��
assuming there is a ��error distance�r theory
 By contrast� we address the harder task of
�nding a distance�r theory whose error is only
� � � �i�e�� which is multiplicatively reduced
from the error of the current theory�
 The analysis in �Gre��� also considers revising a theory
using complete examples� it however considers the �agnostic� setting �KSS��� " i�e�� it does
not assume there is a ��error distance�r theory
 It proves that O� r

��
ln r� complete training

examples are sucient to identify a theory whose error is within � of the best distance�r
theory
 �This best theory may not have � error
� Notice that neither �Moo��� nor �Gre���
explicitly deals with the error of the initial theory

Greiner �Gre��� also considers the computational challenge of �nding this near�optimal

theory given these samples� proving that it is NP�hard to �nd a theory whose error is even
close to �i�e�� within a small polynomial of� the optimal distance�r theory
 By contrast� note
theModify�DNF algorithm is able to solve a harder task �i�e�� �nding a theory whose error
is
� � �� in polynomial�time� this suggests a further advantage of using the given relevance
information

Theorem � assumes that each instance is blocked by ��cor

 To motivate a slightly di�erent

blocker� imagine the only way to determine the value of each attribute is to perform an
expensive test
 We would then perform only the tests deemed essential by the best available
authority� namely �init� unless �init led us astray
 Here� we would call upon a human expert�
who would use his �cor to extract a new set of appropriate attribute values
 That is� we

Knowing What Doesn�t Matter ��

d�

x�
�
�
�
��������

HHHHHHH

HHHHHHH
x	
�
�
�
�
�
�

�
�
�
�

Fx�
�
�
�
��

�
�

��

Q
Q
Q
QQ

�
�
�
�
�

�
�

x�
�
�
�
�

�
��

�
��

F T

x�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
��

F

x

�
�
�
�

�
��

�
��

F T

x�
�
�
�
��

�
�

��

Q
Q
Q
QQ

�
�
�
�
�
�
�
T

x�
�
�
�
�

�
�

�
�

�
�
�
�
�
A
AA
T

x

�
�
�
�

�
��

�
��

F T

Figure �� Modify�DT applied to d� �from Fig
 ��� using hh�� �� �� �� �� �i� F i

would use the blocker

����x�

�
��init

��x� if �init��x� �cor��x�
��cor

��x� otherwise

Notice a system using this blocker will tell the learner both ��� of the tests ��init
considered

super�uous� which were really relevant� and ��� of the tests ��init
considered relevant� which

were really super�uous
 It is easy to see that that Modify�DNF algorithm also works if we
use this �� blocker
��

Modifying Decision Trees� There is a trivial way to use the Modify�DNF algorithm
to modify a theory encoded as a decision tree� First express the decision tree t as the DNF
formula �t� and then use a set of samples to learn a new DNF formula
 Unfortunately� the
formula produced need not correspond to a small decision tree
 For this situation� we use the
Modify�DT procedure which� given an initial decision tree dinit� together with parameters
speci�ed below� �rst collects an �appropriately sized� set of blocked�and�labeled samples�
and then passes these samples� along with dinit� to BuildDT�
 This BuildDT� algorithm
di�ers from Build�DT only in its termination condition
 Recall from Figure � that Build�
DT terminates when all remaining samples have the same label� or when this set is empty

BuildDT

�� however� continues to grow the tree even when all samples have the same label�
until there are no more variables left to test
 Using the empty set fg to denote an empty
tuple �where all variables are either �� or have been projected away� we can write the new

��In fact� this research project was originally motivated by exactly this task� viz�� revising an existing
diagnostic theory where each training sample contains only the informationused to reach a speci�c conclusion�
from a particular faulty knowledge base� Langley et al� �LDRG��� describes our implementation� together
with a corpus of experiments� within this model�

Knowing What Doesn�t Matter ��

termination condition as�

If �every entry in S is h fg� Ti �

Then NT�LeafLabel T

Return� NT �

If �every entry in S is h fg� Fi �

Then NT�LeafLabel F

Return� NT �

If �S is empty�

Then Let NT � �diminished version of initial dinit tree�
Return� NT �

Here� each �diminished subtree of dinit� corresponds to the parts of the initial dinit that were
not eliminated in the path to that leaf
 An equivalent way of thinking about the last step
is that we �rst append an exact copy of dinit to such leaves
 However� dinit may test some
variables that were already tested in the path above where dinit was appended
 Thus� we
can simplify ��diminish�� the appended copy of dinit by removing these repeated tests

As an example� suppose Modify�DT� working on the initial tree d� �from Figure ���

received only the labeled instance a hh�� �� �� �� �� �i� F i
 It would then produce the d�
tree shown in Figure �
 �In this �gure� the arcs shown as double lines point to �diminished�
versions of dinit
� The labeled instance a corresponds to the path from x� to x	 �i�e�� down

x��s left�child�� and then from that x	 to its right child �labeled with F �
 Now observe
the two other subtrees� which correspond to the x� � and x� ��and�x	 � situations�
here Modify�DT places diminished versions of d�� which correspond to the fx� �� �g and
fx� �� �� x	 �� �g assignments
 For pedagogical reasons� Figure � includes �phantom nodes��
shown as �

�� ���� which correspond to where x� and x	 were in the original d� tree
 Of course
the �diminishing� process �simpli�cation� removes these nodes� because they correspond to
tests that were made higher in the tree

To understand why Modify�DT works� note that we can view its output as consisting

of an initial �pre�x� subtree� which we call dS� some of whose �leaves� point to versions of
d�
 If we present dS with one of the examples in S� i�e�� one of the examples in the training
set� we reach a leaf of dS labeled correctly for s �i�e�� T or F �� for each such s� we never reach
a leaf of dS which points to a version of d�
 Thus�Modify�DT�s result classi�es the training
data correctly
 Now consider an instance that does not match one of the training examples

When dS is presented with this instance� it will always reach one of the leaves to which a
version of d� was appended
 Thus� on such examples�Modify�DT�s result will produce the
same label that d� would have produced
 To summarize� Modify�DT produces a tree that
will return the correct label for each training instance� but� in every other situation� it will
produce the same label that d� had returned�
To state the result more precisely� we �rst need to de�ne the syntactic di�erence between

the decision trees d� e � DT n� Let d��� fd���
� � � � � � d

���
k g �resp
� d��� fd���� � � � � � d

���
� g� be

the set of conditions of the paths in d that lead to leaf nodes labeled T �resp
� labeled F�� we

similarly de�ne e��� fe���
� � � � � � e

���
k� g and e��� fe���� � � � � � e

���
�� g for the e tree
 �Hence� for

Figure ��s d�� d
���
� f %x�%x�x�� x�%x�x�� x�x�x
 g and d

���
� f %x�%x�%x�� %x�x�� x�%x�%x�� x�x�%x
 g
�

Knowing What Doesn�t Matter �	

Algorithm Modify�DT� dinit � DT Type	 r� n � N	 �� �� � � ��� � �� DT Type

Draw mr �
�r
�� ln

�
n
� training �blocked� labeled� samples� S

�� Alternatively	 if � is not known a priori	 we can instead collect �r
� ln �
r

� samples
that dinit does not label correctly �i�e�	 either mislabels	 or is unable to label� ��

Let dout � Build�DT
��S� dinit �

Return dout
End Modify�DT

Figure �� The Modify�DT algorithm for modifying an initial Decision Tree

d

x�
�
�
�
�

�
��

�
��

T x�
�
�
�
�

�
��

�
��

F T

d�

x�
�
�
�
�

�
��

�
��
Fx�

�
�
�
�

�
�

�
�

T �
�
�
�
�

�
��
F

Figure 	� Simple Decision Trees

We then de�ne

rDT �d� e� jd��� 	 e���j $ je��� 	 d���j $ jd��� 	 e���j $ je��� 	 d���j

as the set di�erence between the corresponding sets
 We can also de�ne
 Pr� d& e � to
be the probability that d will label an instance di�erently than e
 With these de�nitions� we
can prove�

Theorem � For any given s�leaf target decision tree dcor � DT n�s� let dinit � DT n be an
initial decision tree whose syntactic dierence is r rDT �dcor� dinit� and whose classi�cation
error is
 Pr� dcor & dinit � � �� Then� for any values of �� � � ��� �� and any distribution
P � under the B�DT � model using the �dcor blocker� Modify�DT�dinit� n� r�
� �� �� will return
a tree d� � DT n� �r�s�r� whose error 	on unblocked� unlabeled instances� is� with probability
at least � 	 �� at most
 � �� Moreover� Modify�DT requires O� r

��
ln n

�
� blocked labeled

samples�

Notice the boolean function produced by Modify�DT is not the same as the function
produced by �rst converting d� to a DNF formula� and then calling Modify�DNF� While
Modify�DNF ruthlessly removes any term that is consistent with any negative instance�
the gentler� more conservative Modify�DT instead tries hard to preserve as much of the
original d� as possible
 As a simple example� consider the d decision tree shown on the left
side of Figure 	� and assume we receive the negative sample hx�� F i
 Here� Modify�DT

would return the d� decision tree shown in Figure 	�s right side� which corresponds to the

Knowing What Doesn�t Matter ��

boolean function �%x�%x��
 Notice this function is reasonable� as ��� d� will label negatively
any instance that is subsumed by x�� and ��� of the remaining space �i�e�� where x� ��� d�

returns the same label that d would� which is T i� x� �

On the other hand� notice the original d encodes the boolean function %x� � x�x�
 Here�

on seeing hx�� F i� Modify�DNF would remove both terms �as each is consistent with x���
leaving only the constant �F� function

One might consider de�ning a Modify�DNF
� algorithm that resembles Modify�DT

by �preserving as much of the initial �init as possible�
 That is� instead of simply removing
any term in �init that is consistent with some negative example� we might replace it with
a weakened version that is inconsistent with all negative examples
 So given hx�%x�� F i as
an example� we might replace x� � �init by x�%x� and x�x�
 Although this is analogous to
Modify�DT� it is problematic
 The di�erence is that a target DNF formula �cor� unlike a
target decision tree� might generate exponentially many negative examples
 Unless we have
seen almost all of these� the error could still be large
 Suppose that� in the above example�
x� is in fact completely irrelevant to the target formula
 Then all terms in �init involving x�
risk false positives
 In fact� the algorithm�s hypothesis will not be suciently correct until it
has seen enough negative examples that the terms involving x� have either vanished� or have
very small coverage
 Unfortunately� this could require very many samples� and furthermore�
lead to a very lengthy hypothesis

��� Degradation of the Training Data

So far our B�DT � and B�DNF � models have assumed that the blocker removes all�and�only
the super�uous attribute values
 There may� however� be situations where the environ�
ment�teacher reports an irrelevant value� or fails to report a relevant one
 In general� we can
model this by assuming that a �degradation module� can interfere with the blocked data�
degrading it before presenting it to the learner� see Figure �
 This subsection presents a
range of results that deal with several types of degradation processes
 In all these results�
we assume blocking is done with the standard B�DNF � model
 Furthermore� we continue to
use the PAC criterion for evaluating learning algorithms
 In particular� we judge success by
performance on complete �unblocked� undegraded� instances even though training is done
with blocked and possibly degraded samples

��
�� Attribute Degradation

The �PA�	��
 degrader randomly degrades each blocked training instance� on an attribute�by�
attribute basis� If the blocker passes unblocked the attribute xi �i�e�� it is relevant�� then the
�PA�	��
 degrader will� with probability i� set xi�s value to �� and with probability �	i� simply
pass the correct value
 Similarly� if the blocker has set attribute xi to � �i�e�� found xi to
be irrelevant�� the �PA�	��
 degrader will� with probability �i� reset xi to its original unblocked
value� otherwise� with probability � 	 �i� it will simply pass xi �
 Notice the values of i
can di�er for di�erent i�s� as can the values of �i
 �Hence� this is �non�uniform� attribute
degradation
�

Knowing What Doesn�t Matter ��

�RealWorld

P ���

�
h�x� ���x�i

hh � �i� T i

�

�

Blocker
�

�
h���x�� ���x�i

hh
 � � 	i� T i
Degrader

	

�
h	����x��� ���x�i

hh� � �i� Ti

�

�

�

�
Learner

��

Classi�er

Figure �� Blocking� then Degradation� Model

For any � � � ��� ��� we say a learning algorithm can PAC�learn with �� �� attribute
degradation if it can PAC�learn given any �PA�	��
 degrader� where each i � and �i � �

The previous sections all implicitly used the �PA�����

degrader� to show that we can learn

with � �
 It is easy to show that there are some upper bounds on the amount of
degradation we can tolerate

Proposition �

� PAC�learning DNFn�s with ��� �� attribute degradation is as hard as PAC�learning
DNFn�s in the standard model 	with complete attributes��

�� It is impossible to PAC�learn DNFn�s with ��� �� attribute degradation�

�� PAC�learning DNFn�s with �
�
�
� �
�
� attribute degradation is as hard as learning DNFn�s

in the standard model�

Parts � and � are immediate� ��� ���degradation simply presents all attribute values�
which is the standard model� and under ��� �� degradation� each training instance is simply
a list of ��s
 If �� �� ��

�
� �

�
� then we have lost all information about relevance� which

means a � is as likely to indicate relevance as not� and so we are clearly in a no better
situation �and perhaps much worse o�� than learning DNFs in the standard model
 �To be
more precise� Imagine we had an algorithm L������� that could PAC�learn given ����� �����
degradation
 It would then be trivial to PAC�learn given all attribute values� Given any
completely speci�ed instance� randomly change ��� of the values to �� and then pass the
resulting partially�speci�ed instance to L�������
�

There are� however� algorithms that can learn with small amounts of degradation
 First�
it is relatively easy to learn from positive examples alone� with up to O�lnn�n� degradation
of either single type
 The idea in each case is that we can expect to see most important
terms in the DNF formula at least once� and identify them as such �rather than as degraded
terms�
 In the following two results� we consider and � less than minfk lnn�n� ���g for
some constant k

Knowing What Doesn�t Matter ��

Algorithm Learn�DNF

� n� s� k � N	 �� � � ��� � �� DNF Type

Draw m
 �
�sn�k

� ln s
� training �blocked� degraded and labeled� samples

Let S� be the positive samples�

Let T be the set of �smallest
 terms in S��

�� For example	 if S� includes both x�x� and x�x�x�	 then T includes only x�x�� ��
Return disjunction of terms in T�

End Learn�DNF

Figure �� The Learn�DNF
 algorithm for ��� k ln �n��n� � attribute degradation

Algorithm Learn�DNF
	� n� s� k � N	 �� � � ��� � �� DNF Type

Draw m	 � ��s�n�k

� ln �s
� training �blocked� degraded and labeled� samples

Let S� be the positive samples�

Let T be the set of �largest
 terms in S��

�� For example	 if S� includes both x�x� and x�x�x�	 then T includes only x�x�x� ��
Let T� be set of terms in T that occur at least �sln�

� times in S��

Return disjunction of terms in T��

End Learn�DNF
	

Figure ��� The Learn�DNF	 algorithm for �k lnn�n� �� attribute degradation

Theorem � The Learn�DNF
 algorithm� shown in Figure �� can PAC�learn DNFn�s with

��� k lnn
n
� attribute degradation� using O� sn

�k

�
ln s

�
� examples� and using only positive examples�

Theorem � The Learn�DNF
	 algorithm� shown in Figure
�� can PAC�learn DNFn�s

with �k lnn
n
� �� attribute degradation� using O� s

�n�k

�
ln s

�
� examples� and using only positive

examples�

The situation is even better for �c log n��DNFn�s formula under �� �� degradation
 Here� as
each term has only c log n variables� we are much more likely to see an undegraded example
of each term in any sample set
 As a corollary of Theorem 	� we can prove�

Theorem � The Learn�DNF	 algorithm can PAC�learn �c log n��DNFn�s with �� �� at�
tribute degradation� using positive examples alone� for any 	known� value of bounded away
from �� To achieve this� we call Learn�DNF

	�n� s� c ln �� 	 ���� �� � ��

Finally� we can also learn with both types of degradation
 To see this result in its
best light� it is useful to distinguish between the degradation rate for positive instances
and negative instances
 In particular� the �PA

�

�	�����
�����	�����
��� degradation model will apply

������ ������ attribute degradation to each positive instance� and apply ������ ������ degradation
to negative instances
 Hence� given an instance hh�� �� �� �i� T i� it will change x� � to �

with probability
���
� � and change x� � to �say� � with probability �

���
�
 But given the

instance hh�� �� �� �i� F i� it will change x� � to � with probability
���
� � and change x� �

Knowing What Doesn�t Matter ��

Algorithm Learn�DNF
	
� n� s� k � N	 �� � � ��� � �� DNF Type

Draw m	
 �
�
� �log

�
� ��

ks
� ln �s

� �
�k�� training �blocked� degraded and labeled� samples

Let S� be the first� at most ks
� ln �s

� � positive samples seen�

Let S� be all the negative samples seen�

Let C be set of all �k�element subsets of S��

Initialize T � fg�

For each c � fc����

 � c��k�g � C�

�� Propose a candidate t � ht��

 � tni by component�wise voting ��

For each i �

n
For � � f �� �� g

Let numi�c� �� � j fc�j� � c
�j�
i � ��
g j

Let ti � argmaxf numi�c��� � � � f�� �� g g

�� Decide whether to accept term t � ht��

 � tni ��

If t contradicts at least
� jS�j
� jCj of the terms in S��

Add t to T�

Return the disjunction of terms in T�

End Learn�DNF
	

Figure ��� The Learn�DNF	
 algorithm for �n���k��� n���k��� ����m	
�� �� degradation

to �say� � with probability �����
 As we see shortly� ���� degradation can be very disruptive

In contrast� our next result is una�ected by arbitrary ����� degradation
 In fact� allowing
for ����� degradation is somewhat redundant� as our de�nition of the B�DNF � model already
allows the blocker to reveal extra attributes in negative examples� thus ����� is included only
for completeness

Here� we can deal with positive degradation of order O�n�

�
k �� for arbitrary k
 This

degradation is suciently large that we may not ever see an entirely correct �i�e�� completely
undegraded� term� within polynomially many samples
 Thus� the basic strategy used in the
earlier results does not apply
 However� we can recover terms by collecting �all� subsets of
�k positive samples� and �voting� �for use of a similar technique� see �KMR�����
 That is�
we construct a term from the subsample by considering each variable xi in turn� and setting
it to �� �� or � according to which value is given most often to xi in the subsample �ties
can be broken in an arbitrary fashion�
 Even if a term is unlikely to ever appear without
any degradation� this voting procedure can recover it
 The reason is that� by looking at all
subsets of �k positive samples� we expect to include sets of samples that are all degradations
of the same term
 Although a relevant attribute might be missing from any given instance in
such a set� it is likely to be present in several of the others
 Similarly� although an irrelevant
attribute might be revealed in one sample� the attribute is unlikely to appear in very many
others
 Thus� �voting� in such a subsample can be expected to identify the truly relevant
attributes with high probability
 Of course� the procedure will also look at many subsets of
�k positive samples that are not all degradations of a common term
 Voting in such subsets
will tend to produce spurious terms� which should not be included in the learner�s hypothesis

Knowing What Doesn�t Matter ��

We use the negative examples to �lter out these inappropriate terms
�� Unfortunately� we
can tolerate much less degradation for negative examples
 The following result requires
��� 	 ����m	
�� where m	
 is the �polynomial size� quantity given in Figure ��

Theorem � The Learn�DNF	
 algorithm� shown in Figure

� can PAC�learn DNFn�s

with �n�
�
k ��� n�

�
k ��� ����m	
�� �� attribute degradation� using O��

�
�ln �

�
�� s

�
ln s

�
��k��� ex�

amples�

��
�
 Adversarial Degradation

The previous section considered probabilistic degradation� of the sort that might arise from
a noisy communication channel
 Even at best� such models will only approximate the �real�
degradation process in a particular task� and in other cases these simple probabilistic models
will be completely inappropriate
 Thus it is useful to consider a broad variety of other
degradation models
 In particular� another commonly studied class of models are those
which regard the degradation process as a malicious adversary� who knows the DNF formula�
the sample distribution� the blocker and even our speci�c learning algorithm� and has some
�limited� power to alter examples in an arbitrary fashion

We consider �rst the �
�A��inst�
k adversary that can change up to k variables on each

instance� for some constant k
 For any k � f�� � � � � ng� we say a learning algorithm can PAC�

learn with k�instance degradation if it can PAC�learn in the presence of such a �
�A��inst�
k

degrader
 �Here� we regard � as simply another value that the degradation process can
change a value from� or to
� In general� such an adversary can prevent learning� even if
k ��

Proposition �� It is impossible to PAC�learn DNFn�s with ��instance degradation� �
�A��inst�
� �

To see this� consider the two simple DNF formulae �� x� and �� %x�� and notice it is
critical to see the value of x� to distinguish between these two di�erent functions
 Here�
however� a �

�A��inst�
� degrader can simply conceal this attribute in all samples

However� we can consider less powerful adversaries� such as the �
�A��inst�
k �resp
� �

�A��inst�
k �

degraders� which can only degrade positive �resp
� negative� samples
 In each case� learning

is sometimes possible
 The result for ��A��inst�k follows immediately from the fact that we can

learn DNF formula from undegraded positive samples alone� see Theorem �
 For ��A��inst�k �
we need only enumerate all the terms from which the degraded positive examples might have
come �note there are polynomially many of these�� and then �lter using negative examples

This is an application of the idea of polynomial explainability �KR���

��Another way of �ltering out some inappropriate terms is to consider only terms that are voted for �over�
whelmingly� by some size�k subset� i�e�� to retain the term generated by a subset only if maxfnumi�c���g
is at least some minimal value for each attribute� However� negative examples are still needed as a �nal
�lter� Such a re�nement requires essentially the same number of samples � i�e�� it would only improve on
the original Learn�DNF�� algorithm by a constant factor�

Knowing What Doesn�t Matter ��

Theorem �� It is possible to PAC�learn DNFn�s with k�positive�instance degradation �
�A��inst�
k �

for any constant k� This holds even in the presense of �n�
�
k ��� n�

�
k ��� ����m	
�� �� attribute

degradation�
It is possible to PAC�learn DNFn�s with k�negative�instance degradation �

�A��inst�
k � for

any constant k� This holds even in the presence of ��� O�ln n�n�� �� �� attribute degradation�

A quite di�erent type of degradation occurs if an adversary can arbitrarily change in�
stances �KL���
 However� we assume that the adversary has to pass a certain fraction of
instances unchanged� i�e�� on each instance the adversary will� with probability � 	 �� show
the learner exactly the appropriate blocked instance
 However� with probability �� the adver�
sary can replace the instance with anything else� as long as the same class label is unchanged

�E�g�� if the target concept is � x�x� and the blocked labeled instance is hx�x�� T i� the
adversary may replace this instance with say h%x�x�� T i� even though the correct label for
%x�x� is not T
 It cannot� however� replace this hx�x�� T i with h%x�x�� F i� nor even with
hx�x�� F i
�
We call this ��A��samp�

� �resp
� ��A��samp�
� � ��A��samp�

� � degradation if the adversary has the
power to change positive �resp
� negative� any� examples in this fashion
 It is easy to show
that an analogue to Theorem �� holds
 That is� we can tolerate ��A��samp�

� for any �xed
� 	 �
 The idea is that� by drawing O����� times as many positive examples as we would
if there were no ��A��samp�

� degradation� we should see �enough� undegraded examples �and�
if we use negative examples to �lter� the presence of the other corrupted examples cannot
harm us�
 In contrast� we can tolerate nontrivial ��A��samp�

� degradation only in settings
where negative examples are unnecessary anyway

Proposition �
 It is possible to PAC�learn DNFn�s with ��A��samp�
� degradation for con�

stant � 	 �� This holds even in the presence of �n�
�
k ��� n�

�
k ��� ����m	
�� �� attribute degra�

dation�
It is possible to PAC�learn DNFn�s with ��A��samp�

� for any �� This holds even in the
presence of ��� O�ln n�n�� �� �� attribute degradation�

Note that ��A��samp�
� degradation is even harder� as is the �very similar� model in which

the adversary can corrupt only positive examples but gets to change the class label
 In either
case� we cannot trust negative examples enough to use them as a �lter for unwanted positive
terms

��� Classi�cation and Attribute Noise

For the reasons hinted in the previous section� classi�cation noise "where a positive example
may be reported as negative� or vice versa " tends to be problematic when it occurs together
with other forms of degradation
 However� if classi�cation noise is all we have to worry about�
things are much better
 In the following� let
 be the �xed probability that an example is
mislabelled

The basic idea is simply to collect a somewhat larger sample� so that most important

terms in the DNF formula �or paths in the decision tree� are likely to have been seen many

Knowing What Doesn�t Matter ��

times
 Any term might have been seen labeled both T and F � but we can assume that the
correct label is the one occurring more often
 If the sample size is large enough� this will
only have a small probability of leading to error

Theorem � It is possible to PAC�learn DNFn�s with any classi�cation noise
 	 ����
This holds even in the presense of ��� O�lnn�n�� �� �� attribute degradation�

Essentially the same ideas also show�

Theorem �� It is possible to PAC�learn DT n�s with classi�cation noise
 	 ����

The �nal corruption process we consider is attribute noise
 By this� we refer to a process
that can probabilistically change the value of an attribute to any value in f�� �� �g
 This
di�ers from attribute degradation by allowing more� for instance� xi � can be changed
to x� �
 The probability of each change can depend on the particular attribute being
changed �e�g�� x� or x�� and the type of change �e�g�� � to �� or � to ��� in the following we
use � simply as an upper bound on these probabilities

In some contexts� the di�erence between attribute noise and degradation is important

However� an examination of the proof of Theorem � shows that this di�erence is not impor�
tant here
 Hence�

Proposition �� It is possible to PAC�learn DNFn�s with attribute noise � 	 n�
�
k ���� This

holds even in the presense of �n�
�
k ���� n�

�
k ���� �����m	
 �� �� attribute degradation�

We close this section by noting that it would be interesting to develop algorithms that
can tolerate many di�erent types of corruption simultaneously
 However� we expect that
the connection between missing data and �irrelevance� will typically be imperfect� and will
furthermore lack any obvious� clean� formalization
 If we nevertheless wish to make use
of the information implied by the missing information " the goal of this work " it will
be important to tolerate as much� and as many di�erent types of� corruption as possible

Proposition �� is a good step in this direction� although there is no reason to suppose that
more cannot be achieved

� Conclusion

Most learning systems are designed to work best when the training data consists of completely�
speci�ed attribute�value tuples
 To the extent that the issue has been considered� missing
attribute values have generally been regarded as extremely undesirable
 The main point of
this paper is that sometimes the opposite is true
 Sometimes the fact that an attribute is
missing is very informative� it tells us about relevance
 This information can be so useful
that very hard problems can become trivial

Moreover� this exact situation� where missing information can be useful� can occur in

practice
 Most classi�cation systems perform and record only a small fraction of the set
of possible tests to reach a classi�cation
 So if training data has been produced by such

Knowing What Doesn�t Matter ��

a system " as in our motivating example of a student examining medical records " our
model of super�uous value blocking seems very appropriate

This paper provides several speci�c learning algorithms that can deal with the partially�

speci�ed instances that such classi�cation systems tend to produce
 We show� in particular�
that it can be very easy to �PAC learn� decision trees and DNF formulae in this model
" classes that� despite intense study� are not known to be learnable if the learner is given
completely�speci�ed tuples
 We then show how these algorithms can be extended to incre�
mentally modify a given initial decision tree or DNF formula� and �nally extend our model
to handle various types of �corruption� in the blocking process �so that a missing value is
not a reliable indicator of irrelevance�� as well as noise

A Proofs

Many of the following proofs use the following well�known form of theCherno bound �Che����

Proposition� Givenm Bernoulli trials with probability of success p� the number of successes
S satis�es�

Pr� S � �� $ ��mp � 	 e��mp����

Pr� S � �� 	 ��mp � 	 e��mp����

for any � � � � �

We begin by proving the result that decision trees can be learned under the B�DT � model

Proof of Theorem �� Given that samples were in fact generated from some tree dt�
and then blocked by �dt �i�e�� blocked according to the B�DT � model�� we can make the
following claim about Build�DT� Build�DT terminates having constructed a tree d of size
at most jdtj� that classi�es all the examples in S correctly
 Correctness �given termination�
is obvious by the nature of the algorithm
 For termination� note that the only possible
obstacle to termination occurs when Build�DT must �nd a variable xi that is unblocked in
a �sub��sample S
 But Build�DT recursively constructs subsamples by grouping samples
that agree on values of some common variables
 The samples in S correspond to paths in
the dt� and there must have been some node in the dt at which they began to diverge from
each other
 �Since we know some samples in S are distinct� they must diverge somewhere
�
The variable labeling the �rst such node must appear in all samples in S� and so would be
a suitable candidate for xi

Next we prove the size bound
 Build�DT has a �potentially� nondeterministic step when

it chooses a variable that is unblocked in every sample
 It is easy to see that Build�DT
can in fact always construct a subtree of dt �although to do this it would need to make
the right choices�
 However� we now show that the size of the tree Build�DT constructs is
independent of the choices it makes� and from these two claims it follows that the constructed
tree is never larger than jdtj
 The proof of the second claim is by induction on the number
of variables
 If n � the result is immediate
 Now consider a set of samples S over n $ �
variables� and suppose xi and xj are two of the variables that Build�DT can choose for the
root �which means that they each appear unblocked in all the samples in S�
 Let di be the

Knowing What Doesn�t Matter ��

tree Build�DT would construct if it were to choose xi as the root
 When Build�DT is
constructing the left and right subtrees of di� it may again have to choose among possible
root variables
 But xj will be among the candidate roots for both subtrees �because the
subtrees are constructed using subsets of S� and so xj will be unblocked for all samples
in each subset�
 Since these subtrees are over n variables we can appeal to the inductive
hypothesis� which says that the size of the subtrees is not a�ected by the choice we make
 We
can therefore assume that xj is chosen as the root of each subtree
 That is� we can suppose
that di consists of xi at the root� followed by xj at both level � nodes in the tree
 However�
we can argue analogously for the tree dj which has xj as the root� we can assume that xi
is always tested immediately after xj
 But now if we compare the four �rd�level subtrees of
di and dj we see that they are both constructed by partitioning S according to the values
of xi and xj and then recursively calling Build�DT
 Thus they should in fact be the same
in both trees �although in a di�erent order�
 Thus the claim is true for n $ � and so the
inductive argument is complete

The second part of the proof concerns the sample size needed
 Note that if a tree t

has error more than �� the probability that t correctly classi�es all of m samples is less
than �� 	 ��m
 Let �s��� be the number of trees �of size s� that have at least � error� and
note that �s��� is bounded by the total number of distinct trees of size s� which is at most
��n�s �EH���
 Then the probability that any tree with error more than � will be entirely
correct on m examples is at most

�s���� �� 	 ��m � ��n�s � �� 	 ��m � ��n�se��m�

This is smaller than � if
m � �s ln��n�	 ln ���� ���

Any tree of size s or less that is completely correct on this many samples is thus likely to
have error at most �
 Since the tree constructed by Build�DT meets this description� we
are done
 The mistake bound is immediate� because in fact each example we see corresponds
to a leaf in the target tree� thus we see at most s distinct examples
 It follows from the
construction of Build�DT that it cannot repeat a mistake

We close by noting that a di�erent analysis of the sample size can be given� which uses

the representation of a s�leaf decision tree as an s�term DNF formula and Theorem �
 The
latter result� proved below� shows that we can expect to see �enough� positive samples when
m O��s��� ln�s����
 This bound may be a better or worse bound than Equation �� de�
pending on the size of s relative to n
 This approach also shows that we can learn decision
trees using only positive samples

Before giving the proofs concerning DNF formulae� it is useful to establish some notation
and a useful lemma
 We will use the convention that a conjunctive term over n variables can
be identi�ed with a vector in f�� �� �gn� in the natural way� if xi � t the vector�s component
is �� %xi becomes �� and otherwise the component is �
 For example� if n � we identify
x� � %x� � x� with h�� �� �� �� �i
 There is a natural partial ordering over f�� �� �g according to
speci�city� t � t� if t� is identical to t except that some components that are � or � in t may
be � in t�
 If t � t� we say that t subsumes t�

Knowing What Doesn�t Matter �	

Recall that we write the s�term DNF formula � to be learned as � t� � � � � � ts�
and we use P to denote the �unknown� underlying distribution over domain instances �i�e��
over Xn�
 This distribution� together with the concept � and the blocker �� induce the
following two useful measures
 First� for i � s� we de�ne the coverage of the term ti as
c�ti� P � f�xj ���x� and ���x� tig �� i�e�� the probability that the blocker will produce ti
from a positive instance �prior to any degradation�
 Second� for any term t� we de�ne
P ���t� to be the probability that t is true but � is false� i�e�� P � f�xj t��x� and ���x�g �
 Note
that P ���t� is � for any term ti � �� and also for any term subsumed by some ti

All our algorithms for learning DNF formulae produce a hypothesis which is itself in

DNFn� although possibly with more than s terms
 The following easy lemma gives sucient
conditions for such a hypothesis �� to have error less than �

Lemma� Let � t�� � � � � ts and �� t��� � � � � t
�
r
 Let s

� � s be the number of terms in �
but not in ��� and let r� � r be the number of terms in �� but not �
 Then P ��&�� � 	 �
if

�
 Each ti with c�ti� � ����s�� is included in ��� and

�
 For all i � r� P ���t�i� 	 ����r��

Proof� Let U � ft�� t�� � � � � tsg be the s� terms in � that are not in ��
 By Condition ��
these all have small coverage
 Now if �x satis�es � but not ��� then ���x� must be in U �or
else ����x� would be true�
 Thus

Pr�� � ���
X
t�U

P �f�xj ���x� � ����x� � ���x� tg�

�
X
t�U

c�t� � jU j
�

�s�
 s�

�

�s�

�

�
�

Error is also possible if ����x� holds but not ���x�
 However� using Condition �� the
probability of this occurring is bounded by

Pr�� � ��� �
rX

i��

P �� � t�i�
rX

i��

P ���t�i� � r�
�

�r�

�

�
�

where the penultimate step �introducing r�� follows because at most r� of the terms in �� do
not occur in �� and only these terms can have nonzero P ���t�i�

Combining the two parts shows that the total probability of error is at most �� as re�

quired

We use this lemma in each of the following results
 With two exceptions� we always use
it in a slightly weaker form with r� replaced by r and s� by s
 We call any ti � � such that
c�ti� � ����s� a heavy term
 Note also that� even though coverage �and hence� heaviness�� is
de�ned with respect to a speci�c blocker� a term may well lead to a correct classi�cation of
more terms than its coverage suggests

Recall that our �rst result for DNF formulae concerns the case where there is no degra�
dation

Knowing What Doesn�t Matter ��

Proof of Theorem
� Because there is no degradation� every positive instance we see is
in fact a term of �� and so the disjunction of these instances trivially satis�es condition � of
the lemma

It remains to verify that we will see� and so include� all heavy terms
 If ti is such a term�

the expected number of occurrences in m samples is at least m����s�
 Using the Cherno�
bounds �here with � �� the probability of never seeing ti is at most e�m����s�
 There are
at most s such terms ti� and so the probability that there is any such term which fails to be
seen is at most se�m����s�
 This is less than � if m � ln �s����s��
 If our sample exceeds this
size� we will recover all the heavy terms with probability at least �	 �� as required

The mistake bound is immediate
 Each positive example we see corresponds to a term in

the target formula� and once we see such a term we never make a mistake on it again
 Thus
we make at most s mistakes on positive examples
 It is easy to see that Learn�DNF never
makes mistakes on negative examples

Our next results concern Theory Revision�

Proof of Theorem � Let s� be the number of terms in �cor but not �init� and r� count
the terms in �init but not �cor
 �Of course� r� $ s� r��cor� �init �
�
Arguing exactly as in the proof of Theorem �� if we consider m � ln ��s�����r���
��

samples then� with probability at least � 	 ���� we can expect to see all terms in �cor that
have coverage at least
����s��

Now consider the �at most r�� terms t� in �init such that P �cor��t�� �
����r��
 A similar

Cherno� bound analysis shows that we can expect to see at least one negative example
contradicting each such t� if we examine a sample of size at least ln ��r�����r���
��

So suppose we examine a sample of size ln ��r��cor� �init�����r��cor� �init���
��� and

apply Modify�DNF to produce a hypothesis ��
init
 From the above arguments� ��

init

should contain all terms from �cor with coverage more than
����s��� and no terms t� with
P �cor��t�� �
����r��
 Now we can apply the lemma in its original �strong� form to �cor and
��
init
 Noting that r

� and s� as used in the lemma necessarily satisfy r� � r� and s� � s��
we see that both conditions of the lemma are satis�ed
 Thus ��

init has error at most
�� as
required

Proof of Theorem �� Recall that we can regard Build�DT� as producing a �pre�x� tree
dS built from examples S that dinit did not� or could not� classify correctly
 There are two
types of leaf nodes in dS � those corresponding to examples in S� and �default� nodes which
are replaced by a diminished version of dinit

For now� ignore the default nodes �e�g�� imagine that each such leaf is labeled F � rather

than with a diminished tree�
 Let E be the event� on the original sample space Xn� that
an instance cannot be classi�ed correctly by dinit after dcor blocking
 Note that dinit might�
in fact� be able to classify some �unblocked� instances in E correctly " but membership in
E is determined by what happens after dcor blocking� which might block enough attributes
that dinit is unable to decide upon a de�nite classi�cation

The tree dS is learned using examples that come from instances in E
 In fact� dS is a tree

learned for the concept dcor� except under a new domain distribution P �� where P � is equal to

Knowing What Doesn�t Matter ��

the original distribution P conditioned on the event E
 Let � be the �unknown� probability
of E
 By Theorem �� for any ��� dS will have an error of at most �� �with probability at
least � 	 ���� under P � if S has size at least �r���� ln ���n���
 �We can use r� rather than
s� here because there are at most r leaves of dcor that are relevant to examples in E
� It is
easy to see that the labeling of default nodes by diminished trees rather than by F does not
a�ect this result
 For S to contain this many samples� we should expect to have to draw
about ��� times as many samples from P � a simple Cherno� bound analysis shows that
��r������� ln ���n��� suces �for r � �� to guarantee this with probability at least � 	 ���

Thus� after this many samples� we expect dS to have error at most �� under P �
 So the
probability that an instance comes from E and that dS misclassi�es this instance� under the
original distribution P � is at most ���

Now notice that if an instance does not come from E then dinit classi�es it correctly

�Proof� As non�default leaves correspond to samples in E� each such instance will be classi�ed
using a default leaf in dS
 Furthermore� anything classi�ed by a default leaf is given the
same label that dinit itself would give
 Thus� instances that are not in E are always classi�ed
correctly by dS
� It follows that ��� in fact bounds the total error� under P � over all of Xn

The result follows by substituting ��
��� in the bounds of the previous paragraph

We close by bounding the size of dout
 Each path in dS �dout�s pre�x� corresponds to a

path in dcor� and so there are at most s jdcorj of them
 Some of these dS leaves are then
replaced by diminished versions of dinit� which have at most jdinitj � s$ r leaves
 Thus� the
resulting dout tree has at most s�s$ r� leaves

Our remaining results all deal with various types of degradation
 When there is ��
degradation with � O�ln n�n�� we may need a sample size larger than was needed for
� �� to be sure of seeing all the heavy terms
 However� this is essentially the only change
required to the proof of Theorem �

Proof of Theorem �� Consider any heavy term ti
 By de�nition� the blocker will produce
ti with probability at least ���s
 However� ti may not survive degradation intact
 Suppose
� 	 minfk lnn�n� ���g
 If ti contains l � n ��s� the probability that none of these ��s degrade
is at least �� 	 ��l� which is more than �� 	 k lnn�n�n
 The extremely conservative lower
bound� ��	 ��n�n � e��� for any � 	 ���� yields a lower bound of ��n�k for any n � �
 �As
��	 k lnn�n�n � e�k lnn ��nk for large enough n� the exponent can in practice be reduced
to simply k
�
Thus� the probability of seeing ti is at least ����sn�k�
 The Cherno� bound argument

used in Theorem � now applies� but using this probability rather than ����s�
 It follows that
a sample size of m � �ln s����sn�k�� is enough so that� with probability at least � 	 �� we
see every heavy term undegraded at least once

Because of the ��degradation� we also see terms other than the ti
 But since any such

term t is subsumed by some ti � �� we know that P ���t� � and thus such terms are
harmless
 If we wish to obtain a shorter hypothesis we can discard any subsumed terms

However� even after removing subsumed terms� the result is not necessary a subset of the
terms in �
 It is true that any degradation of a heavy term ti will be removed� because ti itself
will be present
 However� we may see degradations of non�heavy terms without seeing the

Knowing What Doesn�t Matter ��

�undegraded� terms themselves� and these degradations cannot be �ltered by subsumption

Our next result permits �degradation of at most O�lnn�n�� but no ��degradation
 This
case is not simply a symmetric variant of the previous result� as �degradation can pro�
duce such terms t for which P ���t� can be large
 �By contrast� the terms produced by
��degradation are subsumed by some ti � � and so are harmless� as P ���t� �
� We must
therefore identify and remove such degraded terms

Proof of Theorem �� Recall that Algorithm Learn�DNF
	 keeps all terms that occur

more than m����sn�k� times in a sample of size m� and which furthermore do not subsume
any other instance in the sample
 We can� without loss of generality� assume that the DNF
formula � is irredundant in the sense that for no ti� tj do we have ti � tj �for otherwise� we
could remove tj�
 It follows that if we see any ti from �� it can never subsume any other
instance in the sample

The algorithm will be correct if we choose the sample size m large enough to ensure that

�with probability at least � 	 ��� each� the following three conditions hold�
First� m must be large enough so that all heavy terms are seen more than m����sn�k�

times� where 	 k lnn�n
 By the argument in the �rst paragraph� if we do see a heavy term
it will never subsume any other instance� and so this will be enough to show that all the
heavy terms are included in our hypothesis
 But� arguing as in the proof of Theorem �� the
expected number of undegraded occurrences of a heavy term is at least m����sn�k�
 Using
Cherno� bounds� the probability of seeing the term fewer than half this many times� is at
most e�m����
sn�k�
 So it suces to have m � ln ��s�����sn�k���
Our second requirement is that each term ti such that c�ti� � ����s�n�k� should be seen

at least once
 Using Cherno� bounds as in Theorem �� it suces that m � ln ��s�����s�n�k

This means that any term which is a degraded version of such a ti will not be included in
our hypothesis� no matter how many times we see it� because it subsumes ti and we expect
to see ti at least once

Thus the only terms which might be incorrectly included in our hypothesis are degra�

dations of terms ti for which c�ti� 	 ����s�n�k�
 But the blocker produces such terms very
infrequently
 Even if every single occurrence of such a term was degraded into the same
�bad� term tb� the expected number of occurrences of tb will be less than ms����s�n�k�
 m���sn�k
 Using Cherno� bounds� we bound the probability that the actual number
of occurrences due to these �very light� ti exceeds m���sn�k� by e�m�����sn�k�
 Here� then�
m � ��sn�k ln ������� suces

Combining the three parts of the proof� we see that if m � ln ��s�����s�n�k��� our hy�

pothesis will almost certainly include all heavy terms� and is very unlikely to include anything
else

Proof of Theorem �� If ti contains only c ln n terms� the probability of an instance of
ti being seen undegraded is at least �� 	 �c lnn nc ln ���	� which� for �xed and c� is
polynomial in n
 Examining the previous proof� we see that it carries through if we substi�
tute nc ln ���	� �the new lower bound on a term being undegraded� for n�k �the old bound�
throughout
 The result follows

Knowing What Doesn�t Matter ��

Our �nal result about probabilistic degradation permits both and � degradation� but
requires negative examples

Proof of Theorem �� The proof has two steps
 First� we show that we can use the
positive examples to construct a �small� �i�e�� polynomial size� set of candidate terms C
ft��� t

�
�� � � � � t

�
rg that is very likely to include all the heavy ti
 We then show how to use negative

examples� to �lter out all terms with P ���t�i� � ���r

We begin with the generation of candidate terms
 Recall that Learn�DNF	
considers

all subsets of �k positive examples� and for each subset constructs a candidate term using a
component�wise �vote�
 Suppose we could be assured that some subset of �k instances were
all degradations of the same heavy term ti
 What is the probability that this subset �votes�
for exactly ti# Consider any variable x
 Each instance gives the variable a di�erent value
from ti with probability at most �� where � maxf���� ����g
 As the correct value will win
the vote unless at least half of the sample votes for something other than the correct value�
we need to bound the probability that k or more of the �k instances give the wrong value�
which is at most

�
�k
k

�
�k 	 ����k �using the observation that the number of subsets of size k��

�k
k

�
� is under the total number of subsets� ��k�
 Hence� the probability that any attribute

will be given the wrong value is at most n����k� which is less than ��� if � 	 ����n���k��

For this� � 	 n���k�� suces� which is an assumption of the theorem

So if we were to have d disjoint size��k subsamples that come from ti� the probability

that none of these vote for ti is less than ���d
 If we have d such subsets for each heavy ti�
the probability that any term is not voted for at least once is at most s��d �as there are at
most s such heavy terms�
 This is less than ��� if

d �
�
ln
�s

�

�
� ln���� ���

�The entire proof will require � distinct conditions to hold� which is why we ensure that each
fails with probability at most ���� rather than just �
�
We can thus be con�dent that C contains each heavy ti so long as we get to see at least

�kd �degraded� examples of each such term
 An easy Cherno� bound argument shows that
m� � maxf�� ln ��s���� �kd�g�� suces� which �after substituting the Equation � bound on
d� holds if m� � ln ��s����ks��
 Of course� we would generally not wish to use many more
examples than this� because the number of candidates grows as �m���k

The second part of the proof uses a general technique which shows that if ��� 	 ����r��

then using O�ln ��r���r��� negative examples one can �with probability at least � 	 ����
�lter any set of r candidate terms so as to ensure property � of the lemma� and yet not
discard any terms ti � � among the candidates

First note that if ti � �� then every example t� produced by the negative blocker �before

degradation� will contradict ti
 That is� t� and ti disagree on the value �� or �� of at least
one variable� x say
 However t� might be degraded� to t� say
 But t� and ti will still be
contradictory unless x was degraded to � in t�
 This happens with probability at most ���

It follows that the number of negative examples we see that do not contradict ti is expected
to be at most ���m� where m� is the number of negative samples

Knowing What Doesn�t Matter ��

Now consider a term tb �� � such that P ���tb� � ����r�
 By the de�nition of P ������
this means that� with probability at least ����r�� a negative instance is consistent with tb

Clearly neither blocking nor degradation can make such an example inconsistent with tb

Thus� we expect to see at least �m����r� negative examples consistent with tb

Recall that our algorithm considersm� negative examples and keeps only those candidate

terms that are consistent with fewer than �m����r� of them
 Using Cherno� bounds and
��� 	 ����r�� the probability of a term ti being incorrectly rejected is at most e�m

�����r��
and if c�tb� � ����r� the probability of tb being kept is at most e�m

����
r�
 Thus� it suces
to have m� � ��r

�
ln �r

�

Note that� using the positive sample size m� suggested above� r 	 �ln ��s����ks����k and
so �very conservatively� m� can be ���log �����ln ��s����ks����k��

The �nal question concerns whether we can expect to see enough of both positive and

negative examples
 But if negative examples occur less than � often� then �true� �i�e�� a tau�
tological concept� will be an acceptable hypothesis
 Similarly� if positive examples are rare�
�false� can be used
 Otherwise� if both positive and negative examples have rates more than
�� we expect to see at least m� positive instances� and m� negative instances� in a sample
of size m
 It it is easy to show that we will �with probability at least � 	 ���� see enough
instances of both positive and negative samples if m � �m���
 The result follows

Proof of Theorem ��� First� consider ��A��inst�k k�positive�instance degradation for any
constant k
 Note that any observed positive example can be an adversarially degraded form
of one of only �k

�
n
k

�
 poly�n� �uncorrupted� terms
 �These uncorrupted terms may have

�� �� attribute degradation� but no adversarial degradation
� Thus� given any polynomial
sample of positive instances� we can construct another larger sample �but still of polynomial
size� that is sure to contain all the uncorrupted terms from which the examples were derived

If we use this larger sample in place of the original positive sample� it is easy to verify that
the proof of Theorem � continues to hold� with few changes
 In particular� we will be able
to reconstruct all the original terms by voting� and then can use negative examples to �lter
out all the unwanted terms

The case of ��A��inst�k k�negative�instance degradation in the presence of ��� O�lnn�n�� �� ��

attribute degradation is an immediate corollary of Theorem �� because the latter result never
used negative instances anyway

Proof of Theorem �� We begin with the case where there is no ��degradation
 The
algorithm we use is to collectmk samples and report the disjunction of all terms that appear�
with either label� k or more times and which are labeled T more often than they are labeled
F
 We specify below the appropriate values of mk and k

To begin� we should choose mk large enough so that we expect to see each heavy term

at least k times
 A fairly routine Cherno� bound analysis shows that

mk
�s

�

�
�k $ � ln

�s

�

�
���

suces
 �The proof is to show that given this sample size we� ��� expect to see each heavy

Knowing What Doesn�t Matter ��

term �k or more times� and ��� will almost certainly see any heavy term at least half its
expectation
�
Now suppose our sample includes k� � k occurrences of a term t
 We expect the term to

be classi�ed correctly at least ��	
�k� times
 Using Cherno� bounds� with � ��	�
����	
�
�� the probability that the sample actually includes k��� or more misclassi�cations is at
most e�k

����������������

In a sample of size mk there may be many samples occurring k or more times� but a

�very�� conservative bound is �n� the number of terms
 �Using the apparently much tighter
bound of mk�k leads to a substantially more complex analysis� for little ultimate gain
� The
probability that any of these is misclassi�ed by more than half its instances is thus at most

�nexp
�
	k�������

�����

�
� which is less than ��� if

k �
�

��	 �
��

�
���n $ ln

�

�

�
���

Hence� if we examine O� sn
�������� ln

�s
�
� samples� we can expect to see all heavy terms k

or more times� each of these terms will be labeled T more often than not� and no negative
terms will mistakenly be identi�ed as being positive
 The result follows

The case for � O�lnn�n� degradation uses an extremely similar argument� see the

proof of Theorem � for the required modi�cations

Proof of Theorem ��� PAC�learning decision trees in the presence of classi�cation
noise follows from the techniques of the previous theorem
 Namely� �rst let k � ���� 	
�
�� ln��s��� �which improves on Equation �� using the observation that there can be at
most s blocked instances in an s�leaf tree� and mk � ��s��� ��k $ � ln��s���� from Equa�
tion �
 Then after mk samples� we expect to see all �heavy� leaves of dcor at least k times�
and to be able to correctly identify each of these leaves� classi�cation
 �Here we say that a
leaf is heavy if it has coverage more than ����s�� whether or not it is labeled T or F �
 We
can then pass just the leaves that occur k or more times in the original sample� together with
the appropriate classi�cation� to Build�DT
 This will construct a tree whose only error is
attributable to the non�heavy leaves that our sub�sample omitted
 But the total error this
can cause is at most �

References

�Ang��� D
 Angluin
 Computational learning theory� survey and selected bibliography

In Proc� ��th Annu� ACM Sympos� Theory Comput�� pages �������
 ACM Press�
New York� NY� ����

�BFOS��� L
 Breiman� J
 Friedman� J
 Olshen� and C
 Stone
 Classi�cation and Regression
Trees
 Wadsworth and Brooks� Monterey� CA� ����

Knowing What Doesn�t Matter ��

�BHL��� Avrim Blum� Lisa Hellerstein� and Nick Littlestone
 Learning in the presence
of �nitely or in�nitely many irrelevant attributes
 J� of Comput� Syst� Sci��
������������ ����
 Earlier version in �th COLT� ����

�Blu��� A
 Blum
 Learning boolean functions in an in�nite attribute space
 Machine
Learning� ������	������ October ����

�Che��� Herman Cherno�
 A measure of asymptotic eciency for tests of a hypothesis
based on the sums of observations
 Annals of Mathematical Statistics� �������
��	� ����

�EH��� A
 Ehrenfeucht and D
 Haussler
 Learning decision trees from random examples

Information and Computation� ����������� ����
 First appeared in COLT ��

�GGK��� Russell Greiner� Adam Grove� and Alex Kogan
 Exploiting the omission of ir�
relevant data
 In Proceedings of the Thirteenth International Machine Learning
Conference� Bari� Italy� July ����
 Morgan Kaufmann

�GM��� Sally A
 Goldman and H
 David Mathias
 Teaching a smarter learner
 J� of
Comput� Syst� Sci�� ������������	� ����
 Earlier version in �th COLT� ����

�Gre��� Russell Greiner
 The complexity of theory revision
 In Proceedings of IJCAI����
����

�GS��� Sally A
 Goldman and Robert A
 Sloan
 Can PAC learning algorithms tolerate
random attribute noise# Algorithmica� ������ July ����

�HKLW��� D
 Haussler� M
 Kearns� N
 Littlestone� and M
 K
 Warmuth
 Equivalence of
models for polynomial learnability
 Inform� Comput�� �������������� December
����

�JKP��� George H
 John� Ron Kohavi� and Karl P�eger
 Irrelevant features and the
subset selection problem
 In Proceedings of the Eleventh International Machine
Learning Conference� pages �������� N
J
� ����
 Morgan Kaufmann

�KL��� Michael Kearns and Ming Li
 Learning in the presence of malicious errors
 SIAM
J� Comput�� �����	���	� ����

�KLPV�	� Michael Kearns� Ming Li� Leonard Pitt� and Leslie Valiant
 On the learnability
of boolean formulae
 In Proceedings of the
�th Symposium on the Theory of
Computations� pages �������� New York� May ���	

�KMR���� M
 Kearns� Y
 Mansour� D
 Ron� R
 Rubinfeld� R
 Schapire� and L
 Sellie
 On
the learnabilty of discrete districutions
 In Proceedings of Twenty�sixth ACM
Symposium on Theory of Computing� pages �	������ ����

�KR��� E
 Kushilevitz and D
 Roth
 On learning visual concepts and DNF formulae
 In
Proc� �th Annu� Workshop on Comput� Learning Theory� pages ��	����
 ACM
Press� New York� NY� ����

Knowing What Doesn�t Matter ��

�KSS��� M
 J
 Kearns� R
 E
 Schapire� and L
 M
 Sellie
 Toward ecient agnostic leaning

In Proceedings COLT���� pages �������
 ACM Press� ����

�LDRG��� Pat Langley� George Drastal� R
 Bharat Rao� and Russell Greiner
 Theory revi�
sion in fault hierarchies
 In Proceedings of The Fifth International Workshop on
Principles of Diagnosis 	DX����� New Paltz� NY� ����

�Lit��� Nick Littlestone
 Learning quickly when irrelevant attributes abound� A new
linear�threshold algorithm
 Machine Learning Journal� ���������� ����

�Lit��� N
 Littlestone
 Redundant noisy attributes� attribute errors� and linear threshold
learning using Winnow
 In Proc� �th Annu� Workshop on Comput� Learning
Theory� pages ��	����� San Mateo� CA� ����
 Morgan Kaufmann

�LR�	� J
 A
 Little and D
 B
 Rubin
 Statistical Analysis with Missing Data
 Wiley� New
York� ���	

�MB��� S
 Muggleton and W
 Buntine
 Machine invention of �rst order predicates by
inverting resolution
 In Proceedings of IML���� pages ������
 Morgan Kaufmann�
����

�Moo��� Raymond Mooney
 A preliminary PAC analysis of theory revision
 In T
 Petsche
and S
 Hanson� editors� Third Annual Workshop on Computational Learning
Theory and Natural Learning Systems 	CLNL����
 MIT Press� ����

�MT��� Sridhar Mahadevan and Prasad Tadepalli
 Quantifying prior determination
knowledge using the pac learning model
 Machine Learning� �	�������� ����

�OM��� Dirk Ourston and Raymond J
 Mooney
 Changing the rules� A comprehensive
approach to theory re�nement
 In Proceedings of AAAI���� pages �������� ����

�PBH��� B
 W
 Porter� R
 Bareiss� and R
 C
 Holte
 Concept learning and heuristic
classi�cation in weak�theory domains
 Arti�cial Intelligence� ���������������
����

�Qui��� J
 Ross Quinlan
 C���� Programs for Machine Learning
 Morgan Kaufmann
Publishers� San Mateo� ����

�RCJ��� K
 Ruberg� S
M
 Cornick� and K
A
 James
 House calls� Building and main�
taining a diagnostic rule�base
 In Proceedings Third Knowledge Acquisition for
Knowledge�Based Systems Workshop� ����

�Riv�	� R
 L
 Rivest
 Learning decision lists
 Machine Learning� ������������� ���	

�Rus��� Stuart Russell
 The Use of Knowledge in Analogy and Induction
 Morgan Kauf�
mann� ����
 �Also� PhD thesis from Stanford University�

�SD��� Jude W
 Shavlik and Thomas G
 Dietterich
 Readings in Machine Learning

Morgan Kaufmann� ����

Knowing What Doesn�t Matter ��

�SG��� Dale Schuurmans and Russell Greiner
 Learning default concepts
 In Proceedings
of the Tenth Canadian Conference on Arti�cial Intelligence� pages �������� ����

�SG�	� Dale Schuurmans and Russell Greiner
 Learning to Classify Incomplete Examples�
chapter �
 MIT Press� ���	

�SV��� G
 Shackelford and D
 Volper
 Learning k�DNF with noise in the attributes
 In
Proceedings COLT���� pages �	����� ����

�Tow��� Geo� Towell
 Symbolic Knowledge and Neural Networks� Insertion� Re�nement
and Extraction
 PhD thesis� University of Wisconsin� Madison� ����

�Tur��� Peter D
 Turney
 Cost�sensitive classi�cation� Empirical evaluation of a hybrid
genetic decision tree induction algorithm
 Journal of AI Research� ����������
����

�Val��� Leslie G
 Valiant
 A theory of the learnable
 Communications of the ACM�
�	������������� ����

�WP��� James Wogulis and Michael J
 Pazzani
 A methodology for evaluating theory
revision systems� Results with Audrey II
 In Proceedings of IJCAI���� pages
���������� ����

