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Abstract—This paper introduces and applies a Genome Wide 

Predictive Study (GWPS) to learn a model that predicts whether 

a new subject will develop breast cancer or not, based on her SNP 

profile. We applied a combination of a feature selection method 

(MeanDiff) and a learning method (K-Nearest Neighbours, KNN) 

to a dataset of 623 female subjects, including 302 cases of breast 

cancer and 321 apparently healthy controls from Alberta, 

Canada. The learning algorithm considered all the SNPs 

(506,836) from a whole genome scan with 100% call rate and 

with minor allele frequency of > 5%. Our learning system 

produced a classifier to predict whether a novel subject has 

breast cancer or not.  The leave-one-out cross-validation 

(LOOCV) accuracy of this classifier is 59.55%. Random 

permutation test show that this result is significantly better than 

the baseline accuracy of 51.52%. Sensitivity analysis shows that 

our model is robust to the number of selected SNPs. To better 

understand the challenge of this task, we then considered other 

learning systems, each formed by pairing some learner [including 

decision trees, support vector machines (SVM), as well as KNN] 

with some feature selection technique [ranging from biologically 

naïve approaches, such as information gain, minimum 

redundancy maximum relevance (mRMR) and principal 

component analysis (PCA), as well as MeanDiff, to ones that use 

biological information – just using the SNPs (i) reported to be 

associated with breast cancer in the literature; (ii) associated with 

genes of KEGG’s cancer pathways; or (iii) associated with breast 

cancer in the F-SNP database].  However, none of these 

combinations yielded a 10-fold CV score better than our 

MeanDiff + KNN combination; indeed, only a few of these 

accuracies were even better than the baseline. We then used the 

only relevant publicly available breast cancer dataset (CGEMS 

breast cancer dataset with 1145 breast cancer cases and 1142 

controls) to further validate our approach. Due to cross platform 

differences, only 103 of the 500 Affy 6.0 SNPs selected by our 

algorithm on were present on the CGEMS Illumina I5 array; this 

meant we could not test the model trained on our data, on the 

CGEMS dataset. We could use it, however, to demonstrate the 

reproducibility of our combination of MeanDiff and KNN, as this 

led to a LOOCV accuracy of 60.25%, which is significantly better 

than the CGEMS baseline of 50.06%. This study shows that 

applying machine learning techniques to GWAS data can 

produce a model that can effectively predict if a novel subject will 

develop breast cancer or not. We anticipate producing yet more 

accurate models by using datasets that include more subjects, 

and that incorporate other types of information about these 

women, including environmental and lifestyle factors, as well as 

other genomic alterations in the form of point mutations and 

Copy Number Variations (CNVs). 

Keywords- machine learning; predictive tool; breast cancer; 

genetic susceptibility; single nucleotide polymorphisms; genome 

wide association studies; complex disease 

I. INTRODUCTION 

Cancer is a complex disease, characterized by multiple 

molecular alterations triggered by genetic, environmental and 
lifestyle effects. Cancer cells typically accumulate alterations 
disrupting the cells’ life cycle of growth, proliferation, and 
death [1]. Genomic changes that can eventually lead to cancer 
are categorized by mutations (<1% in frequency), Single 
Nucleotide Polymorphisms (SNPs, >1% in frequency), 
insertion and deletion polymorphisms and structural changes in 
chromosomes such as Copy Number Variations (CNVs). SNPs 
are the most common type of inherited genomic variation. 
Recent advances in high-throughput technologies have led to 
whole-genome SNP arrays; datasets of such profiles over many 
subjects provide a valuable means for discovering the 
relationship between SNPs and phenotypes such as cancer, 
diabetes, and hypertension; and also help identify additional 
novel genes/pathways associated with disease aetiology.  
Genetic susceptibility could be explained in part by an 
individual’s SNP or CNV signature, since these comprise more 
than 90% of the variation observed in the heritable genome [2].  

A genome wide association study (GWAS) compares the 
SNP profiles, over a wide range of SNPs, of two groups of 
participants: e.g., people with the disease (cases) versus people 
without the disease (controls). Each individual SNP whose 
values are significantly different between these groups 
(typically based on chi-square test between the values observed 
for the two groups) is said to be associated with the disease [3]. 
Of course, the resulting associated SNPs – even those with high 
statistical significance using genome-wide corrections for 
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multiple hypothesis testing – are at best proxies for truly causal 
information, which can only be obtained through further deep 
sequencing of the associated loci and well-designed appropriate 
wet-lab studies. The database of Genotypes and Phenotypes 
(dbGaP) archives and distributes the results of studies that have 
investigated the interaction of a genotype and phenotype in 
GWASs [4]. While GWASs can help the researchers better 
understand diseases, genes and pathways, they are not designed 
to predict whether a currently undiagnosed subject is likely to 
develop the disease. This paper introduces Genome Wide 
Predictive Studies (GWPSs), which take the same input as a 
GWAS (a set of SNP arrays, each labelled as a case or a 
control) but outputs a classification model that can be used later 
to predict the class label of a previously undiagnosed person, 
based on his/her SNP profile. The field of machine learning 
provides a variety of statistical, probabilistic and optimization 
techniques that allow computers to learn such classifiers from 
these datasets of labelled patients. Machine learning has been 
applied successfully in many areas of biology and medicine, 
often to produce effective predictors.  Baldi and Brunak [5], 
Larranga et al. [6], Tarca et al. [7], Cruz and Wishart [14] each 
surveyed various applications of machine learning in biology, 
including gene finding [8], eukaryote promoter recognition [9], 
protein structure prediction [10], pattern recognition in 
microarrays [11], gene regulatory response prediction [12], 
protein/gene identification in text [13], and gene expression 
microarray based cancer diagnosis and prognosis [14]. We 
consider a way to learn a predictor (“who has breast cancer?”), 
for a dataset that specifies all available SNPs about each 
subject. Note that this differs from research that attempt to 
learn predictors from only a pre-defined set of candidate SNPs. 
As an example, Listgarten et al. [15] applied a machine 
learning tool (support vector machine, SVM) to a pre-defined 
set of 98 SNPs, distributed over 45 genes of potential relevance 
to breast cancer, to develop a predictive model with 63% 
accuracy for predicting breast cancer. Ban et al. [16] applied a 
SVM to analyze 408 SNPs in 87 genes involved in type 2 
diabetes (T2D) related pathways, and achieved 65% accuracy 
in T2D disease prediction. Wei et al. [17] studied type 1 
diabetes (T1D) using genome wide scan of SNPs and reported 
84% area under curve (AUC) using an SVM. Hajiloo et al. [18] 
learned an ensemble of decision trees, which involves 149 
SNPs, to predict ethnicity (lineage) with 100% accuracy using 
HapMap II dataset. 

Our approach also differs from the conventional risk 
modeling/prediction studies. The standard risk modeling 
studies also begin with a small set of pre-defined features: they 
first sort the training subjects into a small set of bins, based on 
the values of these features – e.g., the Gail model uses 7 
features to produce a small number of bins – and record the 
percentage in each bin with the phenotype (here breast cancer) 
[19-20].  Afterwards, to estimate the risk a new subject will 
face, this tool uses the subject’s values for those relevant 
features to sort that subject into the proper bin, and returns the 
associated risk.  Hence this approach bases its assessment on 
only a small number of pre-specified features. Note this might 
not be sufficient to usefully characterize the subjects, especially 
if the hand-picked features are not adequate.  On the other 
hand, our machine learning (ML) approach lets the data dictate 

on the possible combination of features that are relevant.  
(While the ML model described in this paper returns a specific 
prediction for the individual – here breast cancer or not – there 
are other ML models that will return the probability that the 
individual will have the disease P(disease | feature_values), 
which is basically risk). Our general goal is to develop a tool to 
help screen women, by predicting which of the apparently 
healthy subjects sampled in a population will eventually 
develop breast cancer. This cannot be done by gene expression-
based microarray analyses, as those results require biopsies of 
tissues from organs or tumours, which means they are only 
relevant to individuals with suspect tissues; hence they are not 
effective at identifying individuals at risk in a general 
population, before the onset of the disease, and so cannot be 
used for our early detection. The standard breast cancer risk 
assessment model (the Gail model [19-20], described above) is 
designed to help with early detection; however, it has only 
limited clinical value, perhaps because it does not yet 
incorporate genome wide genetic data.  Note that two recent 
extensions to the Gail model of breast cancer risk also included 
7 or 10 SNPs associated with breast cancer susceptibility (from 
GWASs) which has led to improved accuracy [21-22].  

This paper presents a method to learn, from a dataset 
containing genome-wide SNPs of a cohort of subjects (cases 
and controls), a classifier that can predict whether a new 
subject is predisposed to the phenotype of breast cancer.  (Note 
this classifier differs from the Gail model, as it can assign each 
individual subject to a label, potentially based on all of the 
features describing that subject.) We describe the challenges of 
addressing this high-dimensional data and show that it is 
capable of producing a classifier that can identify, with 59.55% 
accuracy, whether the subject has breast cancer, based only on 
her SNP profile. While this might not be clinically relevant at 
this stage, this performance is statistically significantly better 
than the baseline (of just predicting the majority class), which 
demonstrates that (1) there is information relevant to breast 
cancer in a patient’s SNP values (note our method used only 
SNPs and not the subjects’ demographic data) and (2) that 
today’s Machine Learning tools are capable of finding this 
important information.    

II. METHOD 

In general, a Genome Wide Predictive Study (GWPS) takes 
as input the SNP profiles of a set of N individuals (both cases 
and controls) and outputs a classifier, which can later be used 
to predict the class label of a new individual, based on his/her 
SNP profile; see Figure 1. Here, we used a dataset of N=623 
subjects including 302 cases (with breast cancer) and 321 
controls (disease free at the time of recruitment), accessed from 
a previous study on sporadic breast cancer wherein breast 
cancer predisposition in women is not related to mutations in 
high penetrance breast cancer genes (eg, BRCA) and other 
genes of moderate penetrance, described in earlier studies. 
Briefly, the study subjects consisted of 348 cases (late onset of 
disease, i.e., of sporadic nature) and 348 controls (with no 
family history of breast cancer) predominantly of Caucasian 
origin. Population stratification correction using 
EIGENSTRAT technique removed 73 subjects that were not  
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Figure 1.  A Schema of Genome Wide Predictive Study (GWPS) Based on 

SNPs 

co-clustering with Hapmap II Caucasian subjects. Germline 
DNA was isolated from peripheral blood lymphocytes. 
Genotyping profiles were generated using Affymetrix Human 
SNP 6.0 array platform (906,600 SNPs on the array). The study 
subjects provided informed consent and the study was 
approved by the institutional ethics board, the Alberta Cancer 
Research Ethics Committee of the Alberta Health Services 
[23]. Following probe labelling, hybridization and scanning, 
the data was filtered by removing any SNP (1) that had any 
missing calls, (2) whose genotype frequency deviated from 
Hardy-Weinberg equilibrium (nominal p-value <0.001 in 
controls) or (3) whose minor allele frequency were less than 
5% (>5% frequency considered as common variants); this left a 
total number of 506,836 SNPs for analysis. For each SNP, we 
represented wild type homozygous, heterozygous and variant 
homozygous by 1, 2, and 3 respectively. We view this as a 
labelled dataset, where the label for each subject is either case 
(1) or control (0).  

A trivial classifier, which just predicts the majority class 
(here control), will be 321/623 = 51.52% accurate.  The 
challenge is producing a classifier that uses subject SNP data to 
produce predictions that are significantly more accurate. In 
particular, we explored tools that use the given labelled dataset 
to find the patterns that identify breast cancer (i.e., case versus 
control). Fortunately, the field of machine learning (ML) 
provides many such learning algorithms, each of which takes 
as input a labelled dataset, and returns a classifier.  These 
systems typically work best when there are a relatively small 
number of features – typically dozens to hundreds. These tools, 
however, work poorly in our situation, with over half-a-million 
features; here, they will invariably over-fit [24]: that is, do very 
well on the training data as they find ways to fit the details of 
this sample, but in a way that does not translate to working well 
on the subjects that were not part of the training dataset. Note 
that our goal is to correctly classify such currently-undiagnosed 
subjects. We therefore apply a pre-processing step to first 
reduce the dimensionality of the data, by autonomously 
identifying a subset of the most relevant SNPs (features).  We 
then give this reduced dataset to a learning algorithm, which 
produces a classifier [25]. We also discuss how to evaluate the 
classifier produced by this “feature-selection + learning” 
system.  

A. Feature Selection 

In our analysis, as we expect only a subset of the SNPs to 
be relevant to our prediction task, we focused on ways to select 
such a small subset of the features.  In general, this involves 
identifying the features that have the highest score based on 
some criteria (which we hope corresponds to being most 
relevant to the classification task). In this study, we used the 
MeanDiff feature selection method, which first sorts the SNPs 
based on their respective MeanDiff values, which is the 
absolute value of the difference between mean values of this 
SNP over the cases and the controls: 

 

                                                  (1)  

 

over the dataset D = C  H where C is the set of subjects 
known to have cancer (each labelled as case) and H is the 
remaining healthy subjects (each labelled as control), and using 
Expr(i,j) as the value of the i'th SNP of  subject j,        
 

   
              is the mean value of the i'th SNP over the 

subset H (the controls) and        
 

   
               is the 

mean value of the i'th SNP over the subset C (the cases). Note 
this MeanDiff(SNPi, D) score will be 0 when SNPi is irrelevant 
and presumably larger for SNPs that are more relevant to our 
prediction task.  

B.  Learning 

To build a classifier, we use the very simple learning 
algorithm, K-Nearest Neighbors (KNN), which simply stores 
the (reduced) profiles for all of the training data [24, 26].  To 
classify a new subject p, this classifier determines p’s k nearest 
neighbors, then assigns p the majority vote.  (So if k=5, and p’s 
5 closest neighbors include 4 controls and 1 case, then this 
classifier assigns p as control). Of course, we need to define 
distances to determine the nearest neighbors.  As we are 
representing each patient as a m-tuple of the SNP values, we 
define the distance between two individuals p = [p1, ..., pm] and 
q = [q1, ..., qm] as the square of the Euclidean distance (aka L2 
distance) as shown below. 

 

                
  

                            (2) 

 

C. Parameter Selection for Learning Algorithm 

Notice the KNN learning algorithm requires us to specify 
how many neighbors to consider – the k mentioned above. 
Which value should we use – i.e., should we use k=1 (i.e., 
consider only the single nearest neighbor), or k=3 or k=5 
or...?  It is tempting to set k by: running 1-NN on the data, then 
determining the apparent error (using leave-one-out cross 
validation – see below), then computing the error associated 
with 3-NN, then 5-NN, and so forth; and finally selecting the 

value k  {1, 3, 5, 7} that produces the smallest error. 
Unfortunately, this would mean finding a relevant parameter 
based on its score on the full set of training data, which 
corresponds to testing on the training data.  That is, the k-value  
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Table 1 - Confusion Matrix for Comparison of True Labels vs. Predicted Labels 
of 623 Subjects Selected for the Breast Susceptibility Study. Accuracy = 
(TP+TN) / (TP+FP+TN+FN) = 59.55%; Precision = TP / (TP+FP) = 50.40%;  
Recall / Sensitivity = TP / (TP+FN) = 61.92%; Specificity = TN / (TN+FP) = 
57.32%. 

 Predicted Label 

True False 

Actual 
Label 

True True Positive (TP) = 187 False Negative (FN) = 115 

False False Positive (FP) = 137 True Negative (TN) = 184 

 

that optimizes that score might not be the one that produces the 
best performance on novel subjects, as the value determined in 
this fashion can lead to serious over-fitting.  

We therefore need a more elaborate method, BestKNN, to 
determine the appropriate values for this parameter.  Here, 
BestKNN first divides the training data into r=10 disjoint 

subsets, D = D1 … Dr, then for each i=1..r, defines D-i=D - 
Di as the complement of Di, and lets Ci1 be the 1-NN classifier 
that is trained on D-i. (For each i, the Ci1 classifier uses the m 
SNPs that have the best MeanDiff(., D-i) scores, based on the 

D-i dataset.  As D-i is different from D-j when ij, the m SNPs 
used by Ci1 will typically be different from the m SNPs used 
for Cj1.). BestKNN then computes the accuracy, acc(Ci1, Di), 
of this Ci1 classifier over Di – ie, over data that it was not 
trained on. It then computes the average accuracy over all r 

different folds,              
 

 
           

 
     which is an 

estimate of how well 1-NN would work over the complete 
dataset D. BestKNN similarly computes score (3,D) based on 

3-NN, and score(5,D), etc., for k{1, 3, 5, 7}, then uses the 
high-watermark as the appropriate value of k.   Here, using 
r=10 folds, it found k

*
 =7 worked best for our dataset (note this 

requires computing the top m SNPs, then running the resulting 

KNN, for 410 different datasets; the only purpose of all of this 
work is to find this k

* 
value).  BestKNN then defines the final 

classifier based on the top m SNPs over the entire dataset, 
using this specific k

*
 =7 value. 

D. Evaluation 

The next challenge is estimating the quality of the classifier, 
C623 = BestKNN(D623) – the classifier produced by running 
BestKNN (which involves the m best MeanDiff SNPs), on our 
623 subject cohort D623. Here we use two strategies to evaluate 
our classification algorithm: (1) by using Leave-One-Out Cross 
Validation (LOOCV) strategy and (2) by using an external 
hold-out (validation) dataset.  

First, we use the LOOCV strategy, which first runs the 
BestKNN algorithm to produce a classifier based on N-1=622 
training subjects (of the dataset with N=|D|=623 subjects), 
which is then tested on the 1 remaining subject. We ran these 
processes N times, so that every subject is used one time as the 
test dataset. We estimate the true accuracy of C623 as the 
percentage of correctly classified subjects, over these 623 folds. 
Producing this estimate means running all of BestKNN 623 
more times – which, recall, each involves computing the top m 
SNPs for 40+1 different configurations. Some earlier 
researchers mistakenly ran their feature-selection process over 
the entire dataset D, and then committed to these features for  

Table 2 - Confusion Matrix for Comparison of True Labels vs. Predicted Labels 
of 2287 Subjects Selected for a Breast Susceptibility Study in CGEMS breast 
cancer dataset. Accuracy = (TP+TN) / (TP+FP+TN+FN) = 60.25%; Precision 
= TP / (TP+FP) = 59.39%; Recall / Sensitivity = TP / (TP+FN) = 59.65%; 
Specificity = TN / (TN+FP) = 59.11%. 

 Predicted Label 

True False 

Actual 
Label 

True True Positive (TP) = 683 False Negative (FN)= 462 

False False Positive (FP) = 467 True Negative (TN) = 675 

 

all folds of the cross-validation process.  Unfortunately, this 
gives inaccurate (overly optimistic) estimates [27-29].  On our 
task, we found that this incorrect process suggests that the 
resulting classifier has an apparent accuracy of over 90% -- 
which is considerably above its true accuracy of around 60% 
(presented below).  

Second, we used an external validation dataset of 2287 
subjects (1145 breast cancer cases and 1142 controls) from the 
Cancer Genetic Markers of Susceptibility (CGEMS) breast 
cancer project [30]. Genotyping profiles for these subjects were 
generated using Illumina HumanHap550 (I5) array platform 
(555,352 SNPs on the array). Consider that as of now the only 
publicly available dataset related to a genome wide association 
study of breast cancer on Caucasian population is the CGEMS 
breast cancer dataset that we use here for external validation. 

III. RESULTS 

Table 1 provides the confusion matrix of actual versus 
predicted labels given by the classification model built using 
BestKNN, over the specified dataset. Our LOOCV estimates 
the accuracy of this model to be 59.55%; with precision 
50.40%, recall/sensitivity 61.92%, and specificity 57.32%.  

To test if this result is significantly more accurate than the 
baseline of 51.52%, we applied a permutation test [38]. Here, 
we permuted the labels in the original dataset randomly, which 
should destroy any signal relating the SNPs to the cancer/no-
cancer phenotype. We then ran the BestKNN to build new 
classifiers on this new dataset, and ran the LOOCV process to 
estimate the accuracy of the new model.  We repeated this 
“permute, learn, evaluate” process over 100 permutations. As 
presented in Figure 2, none of these accuracies (of the 100 
models built over randomly permuted labelled datasets) 
exceeded the 59.55% accuracy of our model. We can therefore 
conclude that our result is significantly better than the baseline, 
with a confidence of more than 1 - 1/100 = 0.99.  (Hence, the 
associated p-value is p<0.01.)  

Figure 3, which provide the LOOCV accuracy of the 
classification model built using BestKNN on sets of SNPs with 
the top {500, 600, ..., 1500} MeanDiff scores, suggest our 
model is fairly robust to the number of MeanDiff selected 
SNPs, when selecting more than 500 SNPs.  

To test the effectiveness of our approach, we next explored 
ways to apply it to other datasets. Unfortunately, there are no 
other public datasets that use the same Affy 6.0 Platform.  We 
did, however, consider applying our C623 = BestKNN(D623) 
classifier on the CGEMS breast cancer dataset with 1145 breast  
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Figure 2.  Histogram of the Accuracies Achieved over 100 “Permute, Learn, 
and Evaluate” instances. None of these Accuracies Exceeded the 59.55% 

Accuracy of our Model. (Min Accuracy=43.49% and Max Accuracy=55.06%) 

cancer cases and 1142 controls genotyped on the Illumina I5 
array platform. This dataset includes only 101 SNPs in 
common with the m=500 SNPs used by C623.  As this meant the 
CGEMS data was missing ~80% of the SNP values used by 
C623, we obviously could not apply C623 directly on this dataset. 
As mentioned earlier the CGEMS breast cancer dataset is the 
only available genome wide association study dataset on 
Caucasian population, we therefore had to design another 
experiment to use the external hold-out set to evaluate our 
approach, of the BestKNN learning method that involved the 
MeanDiff feature selection method. Here, we applied the same 
algorithm explained in the Methods section, BestKNN( .), but 
here trained this method over D2287, the 2287 subjects of 
CGEMS breast cancer dataset. We again evaluated the 
performance of this learned model using the LOOCV method. 
Table 2 shows the estimated accuracy of this learning 
algorithm on this external validation dataset, BestKNN(D2287), 
was 60.25% (which is significantly better than the baseline of 
50.06%), with precision 59.39%, recall/sensitivity 59.65%, and 
specificity 59.11%. This confirms reproducibility of the results 
of the algorithm described above, as this exact system works 
effectively on a second, very different breast cancer dataset.  

Hoping to further improve these results, we explored 
several biologically blinded and informed techniques for both 
selecting features and for building the classifier itself. To select 
features, we considered biologically blinded methods such as 
information gain [39], minimum redundancy maximum 
relevance (mRMR) [40] and principal component analysis 
(PCA) [41]. We also applied other biologically blinded 
learning algorithms, including decision trees [39], and support 
vector machines (with RBF kernel) [42]. In all, we tried 12 
different combinations of these learners, coupled with various 
feature selection algorithms (each with its own range of 
parameters values) – each of which proved to be 
computationally intensive (several CPU days). Table 3 shows 
the accuracy of each of these combinations. Here, we have used 
10-fold cross validation accuracy to evaluate the performance 
of each of these combinations.  

We also used biological information related to cancer to 
inform feature selection – ie, use SNPs known to be relevant to 
breast cancer, rather than our biologically-naïve MeanDiff 
method: First, we analyzed 28 SNPs identified by recent 
GWASs as being highly associated with breast cancer (see  

 

Figure 3.  Leave-One-Out Cross Validation (LOOCV) Accuracy of the 

BestKNN Classifier building using Different Numbers of SNPs 

Table 4; [30-37]). We trained a classifier over the 623 subjects, 
but using only these 28 SNPs; unfortunately the LOOCV of 
this classifier was just baseline. We also checked how many of 
these 28 SNPs appear in the list of 500 SNPs selected by our 
algorithm, but found that none of them showed up in this list. 
Second, we tried using only the 12,858 SNPs associated with 
genes of KEGG’s cancer pathways [43] recognized as 
hallmarks of cancer [1]; unfortunately, the classifier based on 
these features also did not perform better than baseline. Finally, 
we built a classifier using only the 1,661 SNPs associated with 
breast cancer in the F-SNP database [44]; this too had just 
baseline accuracy.  These negative results show that the 
obvious approach of first using prior biological information to 
identify SNPs, and then learning a classifier using only those 
SNPs, does not work here. Recall that our feature selection 
method found the relevant SNPs itself; n.b., it did not just use 
the SNPs considered significant by some earlier association 
test.  (This demonstrates that the predictive power of our model 
is independent of the SNPs that previous GWASs have 
reported to be statistically significant for breast cancer 
susceptibility.) Our feature selection method automatically 
deals with the redundancies of features – ie, SNPs that are 
highly correlated with one another. We are now exploring ways 
to use SNPs from common variants, anticipating that clinically 
useful models may emerge from integrating rarer variants and 
mutations in the genome as well as gene-environment 
interactions using the machine learning approaches described. 

IV. DISCUSSIONS 

Fortunately, the earlier studies, using MeanDiff within 
BestKNN, confirm that SNPs do carry information related to 
breast cancer genetic susceptibility, and that GWPSs is a 
promising tool for decoding and exploiting this information. 
While this approach is theoretically applicable for studying 
other cancer types and diseases, we list below many of the 
potential limitations that make it difficult to produce more 
accurate breast cancer prediction models at this time: 

Small Sample Size vs. Large Feature Size: As noted 
earlier, as the number of subjects in this study is much less than 
the number of SNPs (a few hundred instances versus half a 
million features) we face high-dimensionality problem which 
causes the learning systems to over-fit – i.e., produce models 
that perform well on the training subjects but relatively poorly 
on new subjects distinct from the subjects used for training. 
Two categories of techniques that attempt to tackle  
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Table 3 – 10-Fold Cross Validation Accuracy of Various Combinations of 
Statistical Feature Selection and Learning Methods 

Feature Selection Method Learning Method Accuracy 

Information Gain Decision Tree 50.88% 

Information Gain KNN 56.17% 

Information Gain SVM – RBF Kernel 55.37% 

MeanDiff Decision Tree 52.06% 

MeanDiff KNN 58.71% 

MeanDiff SVM – RBF Kernel 57.30% 

mRMR Decision Tree 51.20% 

mRMR KNN 57.78% 

mRMR SVM – RBF Kernel 56.18% 

PCA Decision Tree 51.69% 

PCA KNN 51.36% 

PCA SVM – RBF Kernel 51.84% 

 

high-dimensionality are feature selection and sample 
integration. This report shows feature selection produces a 
classifier whose accuracy is significantly above baseline. 
Sample integration involves increasing the number of subjects 
in the study by either collecting more instances or by 
combining the dataset with other existing datasets, perhaps 
from different laboratories. However, there are still many 
significant challenges here, including dealing with batch effects 
[45].  

Heterogeneity of Breast Cancer: Breast cancer is 
biologically heterogeneous: current molecular classifications 
based on transcriptome-wide analysis, clinical determinations 
of steroid hormone receptor (like ER) status, human epidermal 
growth factor receptor 2 (HER2) status, or proliferation rate 
status (PR), all suggest a minimum of four distinct biological 
subtypes [46]. Common, or subtype specific, genetic 
predispositions to each of these molecular subtypes of sporadic 
breast cancer may also influence the models for breast cancer 
prediction; these aspects deserve further investigations. A large 
proportion of SNPs found significant in GWASs were 
associated with the ER+ (estrogen receptor positive) breast 
cancers -- the class that includes up to 70% of all diagnosed 
breast cancers.  Our current dataset ignores the differences by 
merging these different sub-classes into a single label, case. We 
might be able to produce a more accurate predictor if we 
employed more detailed labelling of sub-cases, to produce a 
classifier that could map each subject to a molecular subtype. 
However, as our dataset is relatively small, further stratification 
of cases into subtypes of breast cancer might add to the high-
dimensionality problem.  

SNPs are Only one Form of Genomic Alterations: While 
the heritable genetic basis for breast cancer occurs in SNPs, 
mutations, copy number variations (CNVs), and other 
chromosomal changes, this study considered only SNPs. We 
believe that augmenting the SNP data with additional genetic 
information, such as insertion/deletion polymorphisms and  

Table 4 - Recent Literature Reported SNPs from Genome Wide Association 
Studies of Breast Cancer 

dbSNP ID Gene Reference 

rs4973768 SLC4A7 Ahmed et al., 2009 [37] 

rs6504950 STXBP4 Ahmed et al., 2009 [37] 

rs3803662 TNRC9/LOC643714 Easton et al., 2007 [31] 

rs889312 MAP3K1 Easton et al., 2007 [31] 

rs13281615 8q Easton et al., 2007 [31] 

rs3817198 LSP1 Easton et al., 2007 [31] 

rs2981582 FGFR2 Easton et al., 2007 [31]  

rs3012642 PHKA/HDAC8 Gold et al., 2008 [34] 

rs7203563 A2BP1 Gold et al., 2008 [34] 

rs6569479 ECHDC1/RNF146 Gold et al., 2008 [34] 

rs2180341 ECHDC1/RNF146 Gold et al., 2008 [34] 

rs6569480 ECHDC1/RNF146 Gold et al., 2008 [34] 

rs2981579 FGFR2 Hunter et al., 2007 [30] 

rs2420946 FGFR2 Hunter et al., 2007 [30] 

rs11200014 FGFR2 Hunter et al., 2007 [30] 

rs7696175 TLR1/TLR6 Hunter et al., 2007 [30] 

rs17157903 RELN Hunter et al., 2007 [30] 

rs1219648 FGFR2 Hunter et al., 2007 [30] 

rs2075555 COL1A1 Murabito et al., 2007 [32] 

rs1978503 FLJ45743 Murabito et al., 2007 [32] 

rs1926657 ABCC4 Murabito et al., 2007 [32] 

rs13387042 2q35 Stacey et al., 2007 [33] 

rs4415084 5p12 Stacey et al., 2008 [35] 

rs10941679 5p12 Stacey et al., 2008 [35] 

rs2067980 MRPS30 Thomas et al., 2008 [36] 

rs7716600 MRPS30 Thomas et al., 2008 [36] 

rs11249433 1p11.2 Thomas et al., 2008 [36] 

rs999737 RAD51L1 Thomas et al., 2008 [36] 

 

CNVs, could lead to more accurate breast cancer predictive 
models.  Of course, as this means using yet more features, this 
could also increase the risk of over-fitting. 

Breast Cancer is also influenced by Non-genetic Factors: 
Heritable factors are only part of the issue: while they play a 
major role in monogenic diseases such as haemophilia; 
diseases such as tuberculosis and lung cancer have a very high 
environmental and life style component and only a subtle but 
finite genetic component contributes to overall risk. Indeed, for 
many of diseases, the genetic component accounts for only 30-
60% of the risk, with the remaining risk due to environmental 
and life style risk factors [47]. There are many factors that 
contribute to developing breast cancer, in addition to heritable 
(DNA based) changes. The major environmental and lifestyle 
risk factors include age, estrogen exposure (from endogenous 
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and exogenous sources), smoking, radiation exposure, obesity, 
and lifestyle in general. As the breast cancer predictive model 
presented here used only germline DNA, it did not incorporate 
any of these non-genetic variables. We anticipate better results 
from a comprehensive model that includes both genetic and 
non-genetic factors. 

V. CONCLUSION 

We present a genome wide predictive study as a way to 
understand, and effectively use, data from multiple single 
nucleotide polymorphisms. We first contrast this approach with 
the more standard associative studies, connecting this 
predictive approach directly with screening and personalized 
health care.  We also show that it differs from the risk model 
(such as Gail) as our model can involve a large number of 
characteristics for each patient (here, hundreds of SNPs).  

We confirmed the feasibility of predicting breast cancer 
susceptibility from genome wide analysis of SNPs and 
presented a classification model that first uses the MeanDiff 
feature selection technique to identify the best subset of 
(m=500) SNPs from the over-500K SNPs of the original 
dataset, then used k-nearest neighbour (with the k learned using 
an appropriate algorithm) as the classifier over these SNPs. 
Leave-one-out cross validation estimates the prediction 
accuracy of this proposed method to be 59.55%. A random 
permutation test indicated that this result is significantly better 
than the baseline predictor (p < 0.01). Sensitivity analysis on 
performance of our classifier showed that our model is robust 
to the number of MeanDiff-selected SNPs. We externally 
validated our learning algorithm using 2287 subjects from the 
CGEMS breast cancer dataset; this again produced a classifier 
whose LOOCV accuracy was significantly better than the 
baseline which shows the reproducibility of our combination of 
MeanDiff and BestKNN in breast cancer prediction.  

To better understand the challenge of this dataset, we 
systematically explored a large variety of other feature 
selection and learning algorithms.  We found that none of the 
biologically naïve approaches to feature selection worked as 
well as our MeanDiff.  We also considered many biologically-
informed methods to select SNPs – using SNPs reported in the 
literature to be associated with breast cancer, SNPs associated 
with genes of KEGG’s cancer pathways, and SNPs associated 
with breast cancer in the F-SNP database.  However, those 
SNPs produced classifiers that were not even better than 
baseline. These negative findings suggest the challenge of our 
task, and of the importance of findings of our study.  

We also identified several limitations that may hinder a 
more accurate predictive model for breast cancer susceptibility. 
Sporadic breast cancer is a heterogeneous phenotype, which is 
also heavily influenced by environmental factors. Moreover, 
while our study does involve 623 samples, this is small relative 
to the number of features (SNPs) from a whole genome scan; 
we expect to achieve yet better results given a larger sample 
sizes. Furthermore, we anticipate developing better predictive 
models by incorporating other information – both other genetic 
information (such as point mutations, copy number variations, 
and other structural chromosome changes using next generation 
sequencing) as well as environmental and lifestyle factors.   

The fact that our study produced statistically significant results, 
despite these limitations, demonstrates the potential of this 
machine learning approach in this context of screening, and of 
personalized patient care.  
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