
Detecting Duplicate Bug Reports with Software
Engineering Domain Knowledge

Karan Aggarwal, Tanner Rutgers, Finbarr Timbers, Abram Hindle, Russ Greiner and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

{kaggarwa, trutgers, timbers, abram.hindle, rgreiner, stroulia}@ualberta.ca

Abstract—In previous work by Alipour et al., a methodology
was proposed for detecting duplicate bug reports by comparing
the textual content of bug reports to subject-specific contextual
material, namely lists of software-engineering terms, such as
non-functional requirements and architecture keywords. When
a bug report contains a word in these word-list contexts, the bug
report is considered to be associated with that context and this
information tends to improve bug-deduplication methods.

In this paper, we propose a method to partially automate
the extraction of contextual word lists from software-engineering
literature. Evaluating this software-literature context method on
real-world bug reports produces useful results that indicate
this semi-automated method has the potential to substantially
decrease the manual effort used in contextual bug deduplication
while suffering only a minor loss in accuracy.

Index Terms—duplicate bug reports; information retrieval; soft-
ware engineering textbooks; machine learning; software literature;
documentation.

I. INTRODUCTION

An integral part of the quality-assurance processes for many
modern software projects is the use of issue-tracking systems;
these systems record bug reports or, issues that developers,
testers, and users encounter for a particular software system. In
effect, these systems serve as repositories of bug reports, stack
traces, and feature requests. Issue tracker constitute a proxy for
measuring the developers’ productivity based on their progress
in correcting or addressing an issue or bug report. Bug reports
are usually written in natural-language text, which implies that
the same issue can potentially be described in different ways
by the various users or developers that encounter this issue.
Typically the vocabulary used by developers differs from that
used by users; thus, to recognize that two bug reports refer to
the same bug, a triager, often an experienced developer, has
to use their expert knowledge to translate bug reports into a
technical language that developers can understand. Often these
reports are duplicates of existing bug-reports, that have been or
are currently being addressed. Recognizing duplicate reports is
an important problem that, if solved, would enable developers
to fix bugs faster, and prevent them from wasting time by
addressing the same bug multiple times.

To reduce manual triaging effort, considerable research
has been done to find an automated method of detecting
duplicate bugs. Prior work from Runeson et al. [1] and Sun et
al. [2], [3] in bug report de-duplication, detection of duplicate
bug reports, measures bug report similarity by combining
natural language similarity measures of bug report descriptions

with categorical bug attributes such as “component”, “type”,
and “priority”. Typically these approaches use off-the-shelf
document-similarity measures and apply them to bug reports.
While this is effective, it ignores an important context: bug
reports are not New York Times articles, bug reports are about
software projects.

Recognizing this important fact, Alipour et al. [4], [5]
exploited the software-engineering and project-specific context
to boost bug-report deduplication. By exploiting contextual
data, comparing a bug report to terms referring to non-
functional requirements or architectural descriptions, Alipour et
al. improved bug-deduplication performance of Sun et al. [3].
This contextual method used manually created word lists and
topics generated through supervised labelled Latent Dirichlet
Allocation (labelled-LDA) on the project’s bug descriptions.
Labelled-LDA worked well but is an effort-intensive process [6].
Alipour concluded that contextual features tend to reveal the
relationship between the bug report text and concepts such as
non-functional requirements or architectural modules. These
relationships can be exploited in bug report deduplication when
different terminology is used to describe the same scenario.
Thus not only could one compare text between bug reports,
one could compare their contexts and associations as well.

The method presented in this paper, called the software-
literature context method, exploits context and further reduces
the manual effort associated with detecting duplicate bug
reports with generic contextual features extracted from software-
engineering literature, rather than project-specific analysis.
These features are general enough to apply to any software-
development project. Thus, bug reports are compared using
natural-language similarity measures, such as BM25F, to word
lists extracted from the chapters of two software-engineering
textbooks – Pressman’s "Software Engineering: A Practitioner’s
Approach" [7] and "The Busy Coder’s Guide to Android
Development" [8] – and documentation of three open-source
projects: Eclipse, Mozilla, and Open Office. Our method is
different from the method described by Alipour et. al. as it uses
word lists extracted from software literature instead of using
bug reports from the software projects to extract the word lists.
These software-literature context word lists reflect the software-
development processes, and the evolution of project, and hence
depict the bug report descriptions. The software-engineering
book by Pressman describes these processes, while the Android
book and the project documentation are used as technical
manuals by developers working on those projects. Hence, these
texts are quite relevant to the task of bug duplication detection.

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada208

In this paper, we use four bug datasets from open-source
projects, Android, Open Office, Mozilla, and Eclipse (contain-
ing approximately 37, 000, 42, 000, 72, 000, and 29, 000 bug
reports correspondingly) and we follow the bug-deduplication
methodology of Alipour et al.

Our results are similar to the results reported by Alipour
et al. but our method requires far less time and effort and is
more general and easy to share.

• Documentation and software-engineering textbook features
were 1.48% less accurate on Android dataset than Labelled
LDA features but these features took the authors only 0.5
hours to extract, while the labelled LDA features took 60
hours to extract due to annotation.

• In the cases of the Eclipse, Mozilla and Open Office
datasets, our method performs on par with an unsuper-
vised LDA method that requires around one person-hour
for word list generation and extraction of all the bug
descriptions from the bug reports in the repository. Hence,
we conclude that the software context literature method
is much more cost effective.

• Furthermore, the software context literature method is
more robust as the word lists can be extracted from
available authoritative sources, which can be chosen to be
directly relevant to the code repositories examined, and
automatically kept up to date. Conversely, the labelled LDA
word lists requires manual annotation of bug reports with
functional features and requires regular manual updates
as the bug repository evolves.

• Unsupervised LDA can be used and has been used by
others [9], yet it requires the time to run LDA across
all bug-reports and the tuning of the LDA parameters is
a cumbersome process, especially as the number of bug
reports grows.

• Finally, this method is easy to use, as developers only
need to use already extracted word-lists, or need to label
textbook and project documentation chapters to extract the
word lists. The software-literature context method benefits
from generalizability and ease of share of contextual word-
lists, implying that if someone shared their extracted word-
lists, like the current authors have, the cost of employing
such a word-list would be the cost of a download.

The rest of the paper is organized as follows. Section
II reviews the relevant literature. Section III describes the
evaluation methodology, Section IV presents the results of
evaluation, and Section V discusses the results. Finally, future
research directions are highlighted in Section VI and the paper
is concluded in Section VII.

II. RELATED WORK

Most bug-deduplication methods use textual analysis to
detect duplicate bug reports. Runeson et al. [1] used NLP
techniques to detect 66% of the duplicate reports of Sony
Ericson Mobile Communications. Bettenberg et al. [10] used
machine-learning classifiers to triage the reports based on
representing the report titles and descriptions as word vectors.
Using support vector machines (SVM) and naïve Bayes, they
obtained accuracy scores of roughly 65%.

Jalbert et al. [11] used categorical features of bug reports,
textual-similarity and graph-clustering techniques to filter out

duplicate reports. They developed an automatic method to
detect the duplicate bug reports, and allowed only one of the
duplicates to reach developers. They evaluated their method
on a dataset of 29, 000 bug reports from Mozilla Firefox and
were able to filter out 8% of the duplicate bug reports.

Wang et al. [12] proposed a method using execution traces
on the Eclipse dataset using NLP techniques; however, their
methodology relies on the manual extraction of the execution
traces, which makes it extremely time-intensive.

Surekha et al. [13] used an n-gram based textual model
on an Eclipse dataset to report top-k bug reports that could
be duplicate of a given bug report. Building on their work,
Sun et al. [3] proposed a new model based on the BM25F
score that uses the term frequency-inverse document frequency
(TF-IDF) score to measure report similarity. In addition, they
use categorical features such as priority and severity to produce
substantial improvements over previous methods. Sun et al.
sorted the reports into different “buckets” according to the
underlying bugs, and focused on sending incoming duplicate
reports to the appropriate bucket. They report top-k bug reports
for a given bug that could be duplicate and use the bugs marked
as duplicates of the bug by triager from the original dataset to
find an improvement of 10-27% over Surekha et al.. One issue
with this kind of evaluation is only true-positives are queried.
Bug reports with no duplicates are not evaluated or queried,
thus true-negatives are not tested.

Alipour [4], [5] improved upon the work of Sun et al. [3] by
adding contextual features using both labelled and unlabelled
LDA generated word lists [6] to the method used by Sun et
al.. Alipour et al. reformulated the task as detecting whether
a given pair of bugs are duplicates or not. The use of LDA
produced strong improvements in accuracy, increasing by 16%
over the results obtained by Sun et al.. Klein et al. [9] and
Lazar et. al. [14] have leveraged the same dataset against
new textual metrics based LDA’s output to achieve an accuracy
improvement of 3% over Alipour et al.. Their work is promising
but relies on running LDA on the corpus itself whereas some
of the features described in this paper are extracted only once
from textbooks and can be applied broadly to other software
projects without any extraction effort from the client (this paper
applies them to 4 different projects).

III. METHODOLOGY

This section describes how to measure the effectiveness
of using contextual features, such as similarity to software
engineering texts, to determine if bug reports are duplicates of
each other. First the processes of curation of the datasets and
the contextual word-lists used to measure contextual features
are described. Next, the extraction of contextual features is
discussed. Finally, the evaluation of how well these contextual
features help bug-report deduplication is discussed.

The Android, Eclipse, Mozilla, and Open Office bug report
dataset used for analysis consists of approximately 37, 000,
47, 000, 72, 000, and 29, 000 bug reports respectively, being
same as used by Alipour et al. [4], [5]. The Android bug
reports are from Nov, 2007 to Sept, 2012; Eclipse for the year
2008; Mozilla for the year 2010; and Open Office for the years
2008 to 2010. Each report contains the following fields: Bug
ID, description, title, status, component, priority, type, version,

209

Fig. 1. Workflow of the software-literature context evaluation methodology showing inputs and output. The sharp edged rectangles represent data and the
rounded corner rectangles represent activities.

open date, close date, and Merge ID. In case of Mozilla, the
name dup_id is used in place of MergeId, in the bug reports. If
one bug is a duplicate of another, the “status” field is marked as
“Duplicate,” and the Bug ID of the duplicate report(s) are listed
in the “Merge ID”field. This enables developers to determine
how many bugs are duplicates, and reveal groups of duplicates
bugs. Table I shows an example of two sample bugs containing
information representative of a typical Android bug. Note that
Bug 2282 is not a duplicate of any other bug, therefore its
MergeID is empty, whereas Bug 14518 is a duplicate and
has a non-empty MergeID assigned to it. Figure I depicts the
workflow of the software-literature context method.

A. Contextual-Features Extraction

The following 8 word lists were used as context in this
study:

1) General software engineering: This word list was extracted
from Pressman’s textbook [7]. The book was split into
13 different word lists corresponding to its chapters like
architecture, UI design, formal methods, and testing. The
complete process took around half an hour for a single
person.

2) Android development: This word list was extracted from
the chapters of Murphy [8] to produce ten word lists
describing features like widgets, activities, databases.
They were all related specifically to Android application
development, and the process took around half an hour
for a single person.

3) Eclipse documentation: This word list was extracted from
the Eclipse platform documentation for Eclipse 3.1 [15].
The documentation was split into 19 different word lists
relating to using Eclipse, debugging, and IDE features.
The process around half an hour for a single person.

4) Open Office documentation: This word list was extracted
from the developer documentation for Open Office 3.0 [16].
The documentation was split into 22 different word lists
relating to using various components like spreadsheets,
text documentation, database access, API design, GUI.
The process around half an hour for a single person.

5) Mozilla documentation: This word list was extracted from
the online developer guide for Mozilla [17]. Unlike Eclipse,
and Open Office there is no one central documentation
for Mozilla products; the online documentation consists
of several webpages, with very short descriptions catering
to online audience. The documentation was split into 13
different word lists relating to using various components
such as browser, Javascript, debugging tools, and testing.
The process around half an hour for a single person.

6) Labelled LDA: These word lists were extracted using
labelled LDA on the Android bug reports by Dan et al.
[6]. There are 72 word lists on a variety of subjects like
wifi, GPS, 3G, keyboard, that were extracted with 60
person-hours of effort on Android bug data-set [18]. These
word lists are not available for other 3 projects – Eclipse,
Mozilla, and Open Office.

7) LDA: These word lists were extracted using topic mod-
elling on all the bug reports from the Eclipse, Mozilla, and
Open Office bug dataset by Alipour et al. 20 word lists
were constructed by using LDA for all the three projects,
and the process took around one person-hour for each
project. The topics were unlabelled.

8) Random English Words: In order to determine that the
specialized word lists were actually having a significant
effect, random English word lists were used as well. These
word lists are the same as those used by Alipour et al.,
consisting of 26 lists each with 100 random words.

The first five lists, general software engineering, Android
development, Eclipse documentation, Open Office documenta-
tion, and Mozilla documentation, were extracted by labelling
chapters on the basis of the software-engineering processes like
maintenance, testing. During labelling, similar chapters were
grouped together under a single label. For example, chapters
titled “Software testing techniques”, and “Software testing
strategies”, were grouped under software testing. The last three
lists were used by Alipour et al.. These word lists contain words
that are more inclined to describe the software engineering
processes while the ones used by Alipour et al. depict the

210

TABLE I. EXAMPLE BUG REPORT INFORMATION

BugID Component Priority Type Version Status MergeID
2282 Applications Medium Defect 1.5 Released
14518 Tools Critical Defect 4 Duplicate 14156

TABLE II. EXAMPLE CONTEXTUAL FEATURES TABLE

BugID Process Manage Design Test ... Re-Eng
14518 0.377 6.887 2.847 4.997 ... 0.753
14516 0.377 6.887 2.847 4.997 ... 0.753
14690 0.681 7.923 3.175 7.954 ... 1.718

products, and specific problems in the software development
in the bug reports.

To build the first five lists, the frequency of each word
occurrences in the text under each label was recorded. Then,
every word that appeared on a comprehensive list of stop
words [19] was removed. Every remaining word that occurred
less than 100 times was also removed for the textbooks. The
threshold of 100 was used as it appeared to the authors to
be the cut-off point between domain-specific language and
generic words. However, no frequency cutoff was used for
the extraction of features from documentation, as its more
concise than the textbook. It took about half of a person-hour
to construct each of these five word lists. These word lists
were used for generating contextual features as described in
Section III-D.

B. Bug-Report Preprocessing

The bug reports were pre-processed according to the
methodology of Alipour et al..

• Bugs lacking sufficient information to use in the dedupli-
cation process were discarded. This included bugs without
Bug IDs as well as bugs marked as a duplicate where
the corresponding duplicate Bug ID was not found in the
repository.

• Stop words were removed from the description and title
fields using a comprehensive list of English stop words.

• The reports were organized into “buckets”, similar to the
methodology of Sun et al. [3]. Each bucket contains a
master bug report, along with all duplicates of that report.
The master bug report is the report with the earliest open
time in that bucket.

• A bucket that contained a very large set of duplicate bugs
was removed from the Android dataset. This bucket would
have introduced a strong bias in the results since such
large clusters of duplicate bugs are uncommon in other
bug repositories.

After this preprocessing step, three different subsets of the
bug reports were constructed for the Android, Eclipse, Mozilla,
and Open Office datasets, each containing a different ratio of
duplicate to non-duplicate reports, in order to observe the effect
of different ratios. The differing ratios were used to determine
what effect the proportion of duplicate bug reports had on
the results. The three subsets used included a set with 20%
duplicates (as per Alipour et al.), 10% duplicates, and 30%
duplicates. In each case, random selection without replacement
from the original dataset was used, selecting as many reports

as possible while maintaining the desired ratios. The focus,
however, was on the 20% duplicate to 80% non-duplicate split
used by Alipour et al.; no claim is made to the superiority of
the 80/20 split over other ratios, rather, it is used to enable
direct comparison of results. A comparison between results
using software-literature context features with those achieved
using LDA is also presented, along with results achieved using
completely random word lists, as a sanity check.

C. Textual and Categorical Similarity Features

After the construction of bug report pairs, compute the
textual, and categorical similarity of the bug pairs were
computed. While extracting textual/categorical features, reports
were compared in a pairwise manner and similarity ratings
were generated for each primitive field in each pair of reports.
Each of the following comparison methods were adapted from
the paper by Sun et al. [3] and were also used in by Alipour
et al. [4], [5].

Title and description fields were compared between bug
reports using a customized version of BM25F, including
both a unigram comparison (words treated individually) and
bigram comparison (words treated in pairs). Categorical fields
(component and type) were compared using a simple binary
rating resulting in a value of 1 if matching and 0 otherwise.
This typically also includes a comparison for a product field,
however this field was not specified in the Android reports.
The two remaining fields (priority and version) were compared
using a simple distance metric resulting in a value between 0
and 1 (where 1 indicates identical values). Hence, a total of
seven textual and categorical features were obtained.

The exact formulae used are below, where d1 and d2 are
sample bug reports:

textual1(d1, d2) = BM25F (d1, d2) (1)
textual2(d1, d2) = BM25F (d1, d2) (2)

categorical1(d1, d2) =
{

1 if d1.prod = d2.prod
0 otherwise (3)

categorical2(d1, d2) =
{

1 if d1.comp = d2.comp
0 otherwise (4)

categorical3(d1, d2) =
{

1 if d1.type = d2.type
0 otherwise (5)

categorical4(d1, d2) =
1

1 + |d1.prio− d2.prio|
(6)

categorical5(d1, d2) =
1

1 + |d1.ver − d2.ver|
(7)

In the above equations, prod, comp, prio, type, and ver
refer to the product, component, priority, type (defects or
enhancement types), and version field in the bug reports,
respectively. An example of the Textual and Categorical
features table can be seen in Table III.

D. Contextual Features and Table Generation

After the computation of textual, and categorical features of
bug pairs, contextual features were constructed using BM25F
similarity scores of bug reports with word lists.

211

TABLE III. EXAMPLE TEXTUAL AND CATEGORICAL FEATURE TABLE

BugID1 BugID2 BM25Funi BM25Fbi Product Component Priority Type Version Class
14518 14516 1.484 0 0 1 1 1 1 dup
7186 7185 1.440 0.16 0 0 1 1 0 non

TABLE IV. EXAMPLE OF FINAL FEATURES TABLE

Bug pair Features
BugID1 BugID2 BM25F Vers Proc1 ReEng1 Proc2 ReEng2 Cosine_Similarity Class
21756 21750 10.78 0 2.96 3.86 1.11 0 0.928 dup
8542 8541 3.07 0 0 1.20 0.56 1.80 0.926 non

BM25F scores for word lists: All contextual features were
extracted using the BM25F algorithm to compare word lists
with bug-report titles and descriptions. Each bug report was
compared to the set of word lists generated for the given context
(as mentioned in Section III-A), where each word list was
treated as text. This results in a new feature for each word list
in that context. For example, the general software engineering
context contained 13 word lists, so this resulted in 13 new
features for each bug report. This procedure was repeated
for each of the contextual categories under investigation :
labelled LDA context, general software engineering context,
Android development domain context, Documentation context,
and random English words context. An example of the general
software-engineering context features can be seen in Table II.

Feature table generation: Next, the contextual features
for individual bug reports were calculated. Using these tables,
a comparison feature table was constructed for pairs of bugs.
Initially, pairwise comparisons were generated for the textual
and categorical features as discussed in Section III-C. Then,
the contextual features were added for each of the bug reports
to these tables along with a cosine similarity feature based on
the similarity between feature vectors of the two bugs. Given,
n is the number of contextual features generated using n word
lists for each bug report, cosine similarity of two reports is
defined as:

cosine_sim(b1, b2) =

∑n
i=1 C1i · C2i√∑n

i=1 C1
2
i

√∑n
i=1 C2

2
i

(8)

The resulting table is an all-features table containing the textual,
categorical, and contextual ratings for all pairs of bugs. See
Table IV the final table representation. The labels Proc1, Proc2
stand for the context Process in TableII for the bug reports 1
and 2 being considered in this pair.

Tables containing only contextual-feature ratings for all
pairs of bugs were also generated to evaluate the effect of
training on only contextual ratings, by simply removing the
textual and categorical features from the all features table to
see how these features perform standalone. Once the data was
prepared, it was passed on to the machine-learning classifiers
for training, testing, and evaluation.

E. Machine Learning and Evaluation Criteria

The contextual features extracted were meant to be utilized
by machine-learning algorithms that could label a pair of
bugs as “duplicate” or “non-duplicate”. Unlike in the work
of Sun et al. [3] that queries only duplicate bugs, this approach
considers true-negatives in the evaluation measure the accuracy

TABLE V. ACCURACY AND KAPPA SCORES USING DIFFERENT
CONTEXT FEATURES FOR THE 80-20 SPLIT FOR THE ANDROID BUG

DATASET. ACCURACY SCORES ARE SHOWN WITH THEIR 95% CONFIDENCE
INTERVAL. ALL THE KAPPA SCORES HAVE C.I. OF 0.01

(a) Android textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 85.43±0.46% 0.509 61.07±0.72% 0.178

Logistic 88.28±0.41% 0.594 80.79±0.19% 0.090
SVM 87.02±0.43% 0.550 80.00±0.00% 0.000
C4.5 92.12±0.43% 0.752 87.37±0.50% 0.583

(b) Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 85.85±0.50% 0.500 77.16±0.66% 0.040

Logistic 89.25±0.38% 0.634 80.93±0.17% 0.090
SVM 90.54±0.36% 0.680 80.00±0.00% 0.000
C4.5 92.10±0.47% 0.752 88.29±0.48% 0.618

(c) Android and Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 85.61±0.46% 0.516 63.53±0.87% 0.205

Logistic 89.66±0.38% 0.650 81.43±0.27% 0.168
SVM 89.10±0.42% 0.630 80.00±0.00% 0.000
C4.5 92.36±0.41% 0.756 87.52±0.48% 0.602

(d) Labelled LDA features from Alipour et al. [4]
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 86.52±0.49% 0.583 81.46±0.50% 0.391

Logistic 92.41±0.36% 0.753 90.43±0.38% 0.672
SVM 92.40±0.35% 0.750 90.54±0.37% 0.680
C4.5 93.62±0.60% 0.799 90.79±0.47% 0.711

(e) Random words
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 51.94±0.47% 0.134 50.39±1.21% 0.117

Logistic 83.73±0.39% 0.385 80.56±0.30% 0.161
SVM 82.60±0.42% 0.362 80.56±0.18% 0.161
C4.5 89.61±0.48% 0.667 85.32±0.48% 0.445

of comparing two non-duplicates. This is especially important
in scenarios where there is a lack of duplicate bug markup.
The table containing all the features, textual, categorical and
contextual, was provided as an input to Weka [20], which runs
a number of standard machine-learning classifiers. The model
obtained through Weka was tested to see how well it performed
on the task of assigning the correct label to a pair of bugs —
“duplicates,” if the two bugs are duplicates or “non-duplicates,”

212

if they are not. In order to avoid over fitting, 10-fold cross
validation was used.

Evaluation of the performance of these models was done
in terms of accuracy and Cohen’s kappa coefficient. Accuracy
is defined as the ratio of number of instances that are correctly
classified to the total number of instances. Cohen’s kappa
coefficient is a modified version of the accuracy score that
attempts to compensate for blind luck. It is defined in Equation
(9), where P (e) is the chance of correctly classifying an
instance with the naïve classifier (i.e. predicting the majority
instance in all cases). In this specific case, P (e) is equal to
the number of non-duplicates expressed as a percentage of the
dataset.

κ :=
Accuracy− P (e)

1− P (e)
(9)

0-R learner, Naïve Bayes, Logistic Regression, SVM (Weka’s
SMO) and C4.5 (Weka’s J48) decision-tree classifiers were
used with default parameters to evaluate the performance of
software-literature context method features. The 0-R learner
always chooses the majority class and is useful as it establishes
a baseline performance for the classifiers.

IV. RESULTS

How well do software-literature context features, extracted
from documentation and textbooks, help answer the question,
"are these two bug reports duplicates or not?" Using the
set of bugs from each project repository, tables with a ratio
of duplicates to non-duplicates of 20-80 were created. The
classification algorithms were applied on two different sets
of features: the contextual features by themselves (software-
literature context method), and the contextual features combined
with the textual and categorical features (features from Sun
et al.[3]). The results are summarized in Table V, Table VI,
Table VII, and Table VIII. To demonstrate the effect of using
different ratios of duplicates to non-duplicates, tables with ratio
of 30-70, and 10-90 were also created for all four projects,
with results summarized in Table IX.

a) Android: These results are largely comparable to
those achieved by Alipour et al. using labelled LDA. The
results for the software-literature context method using 80-20
split are shown in Table V. Table V (a) shows the results for
the Android textbook features, while Table V (b) shows the
results for the general software-engineering textbook features.
There is a marginal difference between the two features, with
Android textbook features performing better, possibly because
they better capture the relevant context. Table V (c) depicts
the results using both the general software engineering and
Android textbook features, with a marginal improvement over
the Android textbook features. Perhaps, the general software
engineering chapters are already covered by the domain specific
Android chapter, thus there is a limited gain. The results for
the labelled LDA can be seen in Table V (d) while the random
context results can be seen in Table V (e).

The best performing classifier, C4.5, classified 92.36% of
the bug-report pairs correctly using both the Android textbook
and general software-engineering textbook features, whereas
labelled LDA correctly classified 93.62% of the reports. When
the random-word list was used, only 89.61% of the reports
were correctly classified. The software-engineering textbook and

Android textbook features perform marginally worse with 92.1%
and 92.12% accuracy respectively. Among the classifiers, C4.5
performs the best followed by SVM, Logistic Regression, Naïve
Bayes and 0-R learner, in that order for the all features tables.
Considering kappa scores, the classifiers using the software-
literature context method features perform similarly to those
using labelled LDA, especially when the results using random
word lists are taken under consideration. For the best classifier,
C4.5, the kappa score for the combined software engineering
and Android textbook context is 0.756, while for the software
engineering context is 0.752 and Android textbook context is
0.752. The kappa score for labelled LDA is 0.799, whereas the
random words context yields a kappa score of 0.667.

For the classifiers using only contextual features, the
accuracy and kappa scores were lower than the corresponding
values for the classifiers with textual, categorical, and contextual
features. The labelled LDA had the highest accuracy at 90.79%
and kappa score of 0.711, followed by Software Engineering
textbook context, combined Android textbook and Software
Engineering textbook context, Android textbook context, and
random context in that order.

While the labelled LDA used 72 contextual features gen-
erated from 72 word lists, this method used only 10 features
for Android textbook and 13 features for general software
engineering textbook. Although, it is always possible for good
results to be due to over-fitting, the 10 features from the Android
development context outperform the 13 features generated by
the general software-engineering context, albeit marginally.
Hence, we conclude that context is more important than the
number of features.

b) Eclipse: Results are as shown in Table VI. Table VI
(a) depicts the results for Eclipse documentation features,
while the Table VI (b) shows the results for general software-
engineering textbook features. There is a small difference
between the two, with Eclipse documentation performing
better. Better performance from Eclipse documentation can
be attributed to the more focused, and relevant context that
Eclipse’s own documentation provides. Table VI (c) shows
the results using both, general software engineering textbook,
and Eclipse documentation features. There is a marginal drop
in the performance of the classifiers as compared to Eclipse
documentation case. Table VI (d) and Table VI (e) depict
the performance of the LDA features, and random context,
respectively.

The LDA feature had the highest accuracy with the best
performing classifier, C4.5, with 92.90% while Eclipse docu-
mentation is a close second with 92.86% accuracy. The general
software-engineering textbook context performs marginally
worse at 92.37% while the random context has 92.2% accuracy.
The context combining the documentation and textbook gives
marginally lower accuracy at 92.81% than the Eclipse documen-
tation context. The kappa scores, for Eclipse documentation,
and LDA have the highest value of 0.775 for the C4.5 classifier.
The software-engineering textbook features perform marginally
worse with a kappa score of 0.761. The context combining the
two - documentation, and textbook context has a kappa score
of 0.772, marginally lower than documentation context, but
higher than the textbook context.

213

TABLE VI. ACCURACY AND KAPPA SCORES USING DIFFERENT
CONTEXT FEATURES FOR THE 80-20 SPLIT FOR THE ECLIPSE BUG DATASET.
ACCURACY SCORES ARE SHOWN WITH THEIR 95% CONFIDENCE INTERVAL.

ALL THE KAPPA SCORES HAVE C.I. OF 0.01

(a) Eclipse Documentation
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 88.80±0.91% 0.65 61.28±1.30% 0.139

Logistic 91.01±0.74% 0.711 83.48±1.03% 0.329
SVM 91.08±0.88% 0.719 80.00±0.00% 0.000
C4.5 92.86±0.76% 0.775 85.87±0.50% 0.521

(b) Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 88.28±0.91% 0.630 64.16±1.30% 0.150

Logistic 90.59±0.76% 0.698 80.61±0.98% 0.090
SVM 90.46±0.90% 0.704 80.00±0.00% 0
C4.5 92.37±0.76% 0.761 84.508±1.09% 0.442

(c) Eclipse documentation and Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 88.63±0.86% 0.649 63.56±1.52% 0.179

Logistic 91.22±0.77% 0.718 84.27±1.31% 0.390
SVM 91.33±0.72% 0.726 80.00±0.00% 0.000
C4.5 92.81±0.73% 0.772 85.87±0.99% 0.533

(d) LDA features from Alipour et al. [5]
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 86.52±1.02% 0.583 74.37±1.32% 0.271

Logistic 91.31±0.73% 0.721 83.84±1.02% 0.383
SVM 91.37±0.86% 0.750 82.39±0.99% 0.232
C4.5 92.90±0.73% 0.775 86.17±0.86% 0.514

(e) Random words
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 82.69±1.14% 0.545 36.62±1.21% 0.048

Logistic 90.48±0.89% 0.693 83.16±0.95% 0.315
SVM 90.54±0.77% 0.703 80.67±1.24% 0.194
C4.5 92.20±0.72% 0.755 83.17±0.98% 0.315

Contextual features without the use of any categorical or
textual features, performed similarly. LDA had the highest
accuracy, marginally higher than the Eclipse documentation,and
combined context of software textbook and documentation.

This method used between 13 features for general software-
engineering textbook context and 19 features for Eclipse
documentation context, while the LDA used 20 features and the
random-word context used 26 features, with lowest accuracy
and kappa scores of the all contexts. This result also constitutes
evidence that context is more important than the number of
features.

c) Open Office: Results are shown in Table VII. Ta-
ble VII (a) depicts the results for Open Office documentation
features, while the Table VII (b) shows the results for the
general software-engineering textbook features. There is a
small difference between the two, with Documentation features
performing better which can be credited to more relevant context
that Open Office’s own documentation provides. Table VII (c)
shows the results using both, general software-engineering

TABLE VII. ACCURACY AND KAPPA SCORES USING DIFFERENT
CONTEXT FEATURES FOR THE 80-20 SPLIT FOR THE OPEN OFFICE BUG

DATASET. ACCURACY SCORES ARE SHOWN WITH THEIR 95% CONFIDENCE
INTERVAL. ALL THE KAPPA SCORES HAVE C.I. OF 0.01

(a) Open Office documentation
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 82.65±1.01% 0.468 57.79±1.46% 0.123

Logistic 87.81±0.79% 0.587 80.89±0.99% 0.164
SVM 87.815±0.94% 0.590 80.00±0.00% 0.000
C4.5 91.47±0.76% 0.723 84.23±1.02% 0.468

(b) Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 84.12±0.94% 0.436 65.01±1.44% 0.106

Logistic 87.01±0.80% 0.554 80.02±0.97% 0.005
SVM 86.93±0.95% 0.553 80.00±0.00% 0
C4.5 90.73±0.78% 0.700 81.96±1.01% 0.342

(c) Open Office documentation and Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 76.31±1.09% 0.367 57.49±1.51% 0.130

Logistic 87.86±0.79% 0.589 81.74±0.94% 0.223
SVM 87.92±0.91% 0.595 80.00±0.00% 0.000
C4.5 91.51±0.76% 0.728 84.35±1.01% 0.478

(d) LDA features from Alipour et al. [5]
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 78.70±1.09% 0.275 71.95±1.24% 0.088

Logistic 86.73±0.82% 0.542 80.19±1.03% 0.057
SVM 86.50±0.97% 0.530 80.00±0.00% 0.000
C4.5 90.71±0.77% 0.699 82.35±1.02% 0.357

(e) Random words
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 41.22±1.69% 0.085 31.99±1.24% 0.029

Logistic 86.78±0.83% 0.545 80.20±1.03% 0.067
SVM 86.45±0.97% 0.527 80.67±0.18% 0.194
C4.5 89.78±0.77% 0.669 81.95±1.02% 0.219

textbook, and Eclipse documentation features. There is a
marginal drop in the performance of the classifiers as compared
to Open Office documentation case. Table VII (d) and Table VII
(e) depicts the performance of the LDA features, and random
context, respectively.

The combined Office documentation and software-
engineering features has the highest accuracy with the best
performing classifier, C4.5, with 91.51% while open Office
documentation is close second with 91.47% accuracy. The gen-
eral software engineering textbook context performs marginally
lower at 90.73% while the LDA is even lower at 90.71%
accuracy. The random context has the lowest accuracy at
89.78%. The kappa scores, for the classifier with combined
Open Office documentation and software engineering textbook
features has highest score at 0.728 for the C4.5 classifier. The
Open office features perform marginally worse with a score of
0.723 followed by software engineering textbook features with
0.7, LDA and random context with 0.699.

214

TABLE VIII. ACCURACY AND KAPPA SCORES USING DIFFERENT
CONTEXT FEATURES FOR THE 80-20 SPLIT FOR THE MOZILLA BUG

DATASET. ACCURACY SCORES ARE SHOWN WITH THEIR 95% CONFIDENCE
INTERVAL. ALL THE KAPPA SCORES HAVE C.I. OF 0.01

(a) Mozilla documentation
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 82.65±0.63% 0.468 67.49±0.87% 0.237

Logistic 90.77±0.47% 0.698 82.42±0.64% 0.275
SVM 90.62±0.54% 0.692 80.00±0.00% 0.000
C4.5 92.66±0.46% 0.765 84.23±0.68% 0.468

(b) Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 84.83±0.65% 0.557 61.65±0.99% 0.169

Logistic 90.45±0.47% 0.686 80.72±0.72% 0.089
SVM 90.41±0.53% 0.682 80.00±0.00% 0
C4.5 92.66±0.47% 0.764 83.72±0.74% 0.426

(c) Mozilla documentation and Software-engineering textbook
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 79.39±0.73% 0.462 57.49±1.04% 0.130

Logistic 90.80±0.42% 0.699 83.36±0.64% 0.345
SVM 90.73±0.54% 0.691 80.00±0.00% 0
C4.5 92.89±0.43% 0.772 85.33±0.73% 0.511

(d) LDA features from Alipour et al. [5]
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 82.44±0.71% 0.483 74.90±0.88% 0.262

Logistic 90.74±0.42% 0.695 83.62±0.65% 0.363
SVM 90.66±0.53% 0.684 80.23±0.53% 0.186
C4.5 93.14±0.40% 0.780 86.02±0.40% 0.508

(e) Random words
Contextual, Categorical

and Textual Contextual Only
Algorithm Accuracy% Kappa Accuracy% Kappa

0-R 80.00±0.00% 0.000 80.00±0.00% 0.000
Naive Bayes 63.28±1.29% 0.276 35.23±1.54% 0.041

Logistic 90.53±0.44% 0.687 80.99±0.77% 0.167
SVM 90.41±0.53% 0.672 80.00±0.00% 0
C4.5 92.22±0.42% 0.755 83.92±0.66% 0.356

Standalone contextual features without the use of any
categorical or textual features, performed in a similar way
as above, both in accuracy and kappa scores. The combined
context of Open Office documentation and the software-
engineering textbook had the highest accuracy, marginally
higher than the documentation features, followed by LDA,
software textbook, and random words.

As noted earlier, the general software textbook context used
13 features while Open Office documentation context used 22
features. LDA used 20 features while the random context uses
26 features, with lowest accuracy and kappa scores of the all
contexts. The general software-engineering textbook context
performs better than LDA despite using far lower number of
features, demonstrating that context is more important than
number of features.

d) Mozilla: Results are shown in Table VIII. Table VIII
(a) depicts the results for the Mozilla documentation features,
while the Table VIII (b) shows the results for the general
software-engineering textbook features. They both perform
equally well. Table VIII (c) shows the results using both

the general textbook and documentation features. There is
an increase in the performance of the classifiers as compared
to either the documentation or the general textbook cases.
Table VIII (d) and Table VIII (e) depicts the performance of
the LDA features and random context, respectively.

LDA features had the highest accuracy at 93.14% with
C4.5 classifier while the combined context of documentation
and textbook was close at 92.89%. The Mozilla documentation
and software engineering textbook features performed equally
well with 92.66% accuracy. Random context performed worst
with 92.22% accuracy. LDA achieved the highest kappa score
of 0.780, while the combined documentation-textbook context
was close second, documentation context, general software
engineering textbook context, and random context followed in
that order.

Classifiers using only contextual features, without any
categorical or textual features, performed in a similar way
as above both in accuracy but somewhat differently in kappa
scores. LDA had the highest accuracy, marginally higher
than the combined context of Mozilla documentation, and
software textbook. However, the combined context of Mozilla
documentation, and software textbook had a marginally better
kappa score than LDA. These are followed by documentation,
software textbook, and random words in that order respectively.

Both general software engineering textbook context, and
Mozilla documentation context used 13 features each. They
had quite close accuracy to LDA that uses 20 features, while
the random context using 26 features had the lowest accuracy
and kappa scores.

Mozilla does not have a downloadable central repository of
developer documentation, unlike the other projects considered,
Eclipse, and Open Office. The Mozilla documentation is more
like a wiki [17], available online, spread out amongst numerous
short webpages. We could only label a few relevant parts of
the documentation to extract the word list features. This could
possibly explain the similar performance of documentation
features versus textbook features. Whereas in the case of
Eclipse, and Open Office, documentation features outperformed
the general textbook features.

From the above discussion and analysis, it can be seen
that for Android, labelled LDA performed better than the
software-literature context method, which performed at par
with unsupervised LDA for the rest of the projects, where
the labelled LDA context was not available. The random
context performed worst out of all the contexts considered,
implying that the context matters more than the number of
extra features introduced. The general software-engineering
textbook features that were applied across all the four projects
perform marginally worse than the project-specific software
documentation, or software platform texts such as the Android
development textbook. In the case of Android, and Mozilla,
these general software engineering contexts performed at par
with project-specific documentation contexts, while performing
marginally lower on with the other projects. This indicates that
the software-literature context method features extracted from
literature that is closer to actual domain of a product result in
better accuracy.

215

TABLE IX. RESULTS FROM USING CONTEXTS WITH DIFFERENT % OF DUPLICATES FOR C4.5

Android Eclipse Mozilla Open Office
Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa

10% 95.09% 0.718 10% 95.47% 0.735 10% 96.18% 0.772 10% 95.49% 0.717
20% 92.12% 0.752 20% 92.86% 0.775 20% 92.66% 0.765 20% 91.47% 0.723
30% 89.56% 0.752 30% 91.18% 0.790 30% 90.74% 0.777 30% 88.64% 0.726
(a) Android dev textbook (a) Eclipse Documentation (a) Mozilla Documentation (a) Open Office Documentation

Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa
10% 95.36% 0.733 10% 95.28% 0.723 10% 96.06% 0.763 10% 95.21% 0.700
20% 92.12% 0.752 20% 92.37% 0.761 20% 92.66% 0.764 20% 90.73% 0.700
30% 90.17% 0.767 30% 91.12% 0.789 30% 90.63% 0.775 30% 87.81% 0.706

(b) Software-engineering textbook (b) Software-engineering textbook (b) Software-engineering textbook (b) Software-engineering textbook
Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa Duplicates% Accuracy Kappa

10% 96.31% 0.790 10% 95.79% 0.754 10% 96.22% 0.774 10% 94.82% 0.680
20% 93.62% 0.799 20% 92.90% 0.775 20% 93.14% 0.780 20% 90.71% 0.699
30% 91.56% 0.799 30% 90.71% 0.699 30% 91.33% 0.792 30% 87.37% 0.699

(c) Labelled LDA (c) LDA (c) LDA (c) LDA

Using different split ratios of duplicates to non-
duplicates: When different splits were used to generate the
dataset, there was a small difference in the resulting accuracy
and kappa scores. The change in scores with respect to different
splits can be seen in Table IX for four project datasets.
However, it is interesting to note that as the percentage of
duplicates increases, the accuracy increases while the kappa
score decreases, which is natural given that kappa addresses
the skewness of the data. In this paper, we focus primarily on
the 80-20 split, as it gives a direct point of comparison with
Alipour et al.’s work.

V. DISCUSSION

The best overall learner was C4.5 (Weka’s J48) in terms of
accuracy and Kappa score, across all bug-report repositories and
features used. In general, the software-literature context method
using a general software-engineering textbook and/or project-
specific documentation fared at par with LDA approaches, but
worse than labelled-LDA approaches. All of these approaches
did better than the random-words approach.

In the case of the Android data set, the software-literature
context features performed slightly worse than labelled-LDA
features. However, the software-literature context features took
much less time to produce, only half a person-hour compared
to 60 person-hours taken to create labelled LDA lists while
suffering only a minor loss in accuracy.

Labelled LDA features are labour intensive and not available
for all projects such as Eclipse, Mozilla, and Open Office.
Alipour et. al. used unsupervised LDA for these datasets. The
software-literature context method features perform at par with
LDA, only with marginal differences across the three datasets:
marginally lower in the case of Mozilla, almost at parity in
Eclipse, and marginally better in the case of Open Office. The
time taken to extract the LDA word lists is around one person-
hour while, as mentioned earlier, the software-literature context
method required only half of a person-hour from a single author,
per project. LDA requires extraction of all the bug descriptions,
knowledge of using the sophisticated LDA tools, and tuning of
parameters. Additionally, for both labelled, and unsupervised
LDA the time and resources required may increase as the lists
need to be updated when the number of bug reports in the
bug-tracker system increases.

Software-literature features are simple, general and easy to
extract and use. The process involves labelling chapters from

software-literature sources and extracting word lists with simple
tokenization. Some literature sources, such as general software-
engineering textbooks, are relevant across all software projects
and performed only marginally lower than the LDA, and other
software project-specific features. For example, the context
word list extracted through the labelled LDA process contained
topics like “3G”, which had not yet been coined when the 2001
edition of Pressman’s book [7] was published; still the loss
in performance was minor. The LDA context will had be to
updated as and when new features are introduced into software
projects, but not so with these general software-engineering
features while also being applicable to all the software projects.

The performance of the generic software-engineering text-
book features suggests that even higher level contexts that
are not specific to the project domain, but rather to the
general software domain, provide a useful and reusable context,
effective for bug-report deduplication. Furthermore, higher-level
contexts can be freely shared and reused by practitioners with
little or no effort compared to extracting features from domain-
specific texts, or using LDA. Additionally, this concept can
be applied in related software engineering tasks like concept
location, or feature location.

Labelled LDA is very time-intensive, whereas the
software-literature context method results in huge time
savings for the developers by many orders of magnitude.
The software-literature context method for bug deduplica-
tion is at par with unsupervised LDA while reducing the
time and improving generalizability.

VI. FUTURE WORK

There are many open questions in the field of contextual
features used in software-engineering tasks such as duplicate
bug-report detection.

(a) What are good methods for representing contextual knowl-
edge? This work uses word lists, but can word distributions
or n-gram corporae be used instead? Should TF-IDF be
used to choose contextual words and what thresholds
should be used? Should LDA be exploited to produce
better contextual features?

(b) How could multiple forms of documentation be exploited?
How can one extract good contexts from multiple text-
books or sources of documentation?

216

(c) Does the domain really matter? Given different domains
of software, does the choice of domain have an effect on
quality and value of contextual features? Do contexts from
operating systems lead to better performance than those
from video games?

(d) How much do we gain from lower-level domain contexts?
Given a slice of a hierarchy of domains such as software
engineering, databases, RDBMS Databses, MySQL con-
cepts, what is the gain in terms of effort and effectiveness
of contexts from each of these domains? How low level
do the contexts have to be?

VII. CONCLUSIONS

This work demonstrates a method of improving the detection
of duplicate bug reports using contextual information extracted
from software-engineering textbooks and project documentation.
Although, the accuracy was lower than that achieved by Alipour
et al. in case of Android, it is important to note that the
labelled LDA technique took 60 person-hours [6]. The software-
literature context method, by comparison, took roughly a half
of one person-hour resulting in only marginally lower accuracy
and kappa scores than the labelled LDA.

In the case of unsupervised LDA, used on Eclipse, Mozilla,
and Open Office the software-literature context method per-
formed at par in Eclipse, marginally lower with Mozilla, and
marginally higher with Open Office. This technique takes half
the time of unsupervised LDA, without use of any sophisticated
tools, optimization of parameters, or extraction of bug report
descriptions, unlike LDA, while performing at parity.

Additionally, these general software-engineering features
can be applied across a wide array of software projects,
as demonstrated on four diverse datasets. The evaluation of
features extracted from project documentation shows that
developers can and should consider extracting their own
contextual features from their own project documentation.
Moreover, the LDA context, supervised or unsupervised, needs
to be continually updated to incorporate new additions to
the existing set of text from the bug reports. In comparison,
the general software-engineering features extracted from a
textbook published in 2001, performed only marginally worse,
showing the robustness of the software-literature context
method. The general software practice terms are used across all
software platforms, hence software literature context features
are applicable across all software platforms. Also, this method
can find possible applications in other software-engineering
tasks like feature location, or concept location. All the word
lists and bug datasets used in this paper can be found online
at: https://bitbucket.org/kaggarwal32/bug-deduping-dataset.

This paper proposes a simpler software-literature context
method for timely detection of duplicate bug reports, reinforcing
the previous findings of Alipour et al. that incorporating
contextual data into software-engineering classification systems
can lead to reductions in the manual effort required while
maintaining or improving the accuracy of duplicate bug report
detection systems.

REFERENCES

[1] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on. IEEE, 2007,
pp. 499–510.

[2] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 45–54.

[3] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval
of duplicate bug reports,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2011, pp. 253–262.

[4] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection,” in Proceedings of the
Tenth International Workshop on Mining Software Repositories. IEEE
Press, 2013, pp. 183–192.

[5] A. Alipour, “A contextual approach towards more accurate duplicate
bug report detection,” Master’s thesis, University of Alberta, Fall 2013.

[6] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on. IEEE, 2012, pp. 83–92.

[7] R. S. Pressman and W. S. Jawadekar, “Software engineering,” New York
1992, 1987.

[8] M. L. Murphy, The Busy Coder’s Guide to Advanced Android Develop-
ment. CommonsWare, LLC, 2009.

[9] N. Klein, C. S. Corley, and N. A. Kraft, “New features for duplicate
bug detection.” in MSR, 2014, pp. 324–327.

[10] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful. . . really?” in Software Maintenance,
2008. ICSM 2008. IEEE International Conference on. IEEE, 2008, pp.
337–345.

[11] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on. IEEE,
2008, pp. 52–61.

[12] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket:
A method for clustering duplicate crash reports based on call stack
similarity,” in Proceedings of the 2012 International Conference on
Software Engineering. IEEE Press, 2012, pp. 1084–1093.

[13] A. Sureka and P. Jalote, “Detecting duplicate bug report using character
n-gram-based features,” in Software Engineering Conference (APSEC),
2010 17th Asia Pacific. IEEE, 2010, pp. 366–374.

[14] A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of duplicate
bug report detection using textual similarity measures,” in Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 308–311.

[15] A. Kiezun. Basic tutorial eclipse 3.1. [On-
line]. Available: http://archive.eclipse.org/eclipse/downloads/drops/R-3.
1-200506271435/org.eclipse.jdt.doc.user.3.1.pdf.zip

[16] Sun Microsystems. (2008) Openoffice.org 3.0 developer’s guide. [Online].
Available: https://wiki.openoffice.org/w/images/3/34/DevelopersGuide_
OOo3.0.0.odt

[17] Mozilla Developer Network and individual contributors. Mozilla
developer guide. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Mozilla/Developer_guide

[18] E. Shihab, Y. Kamei, and P. Bhattacharya, “Mining challenge 2012: The
android platform,” in The 9th Working Conference on Mining Software
Repositories, 2012, p. to appear.

[19] C. Buckley and G. Salton. (2013, Dec.) Stop word list. [Online].
Available: http://www.lextek.com/manuals/onix/stopwords2.html

[20] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Intelligent Information Systems, 1994. Proceedings of
the 1994 Second Australian and New Zealand Conference on. IEEE,
1994, pp. 357–361.

217

