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Abstract

In this paper we consider sampling based
fitted value iteration for discounted, large
(possibly infinite) state space, finite action
Markovian Decision Problems where only a
generative model of the transition probabili-
ties and rewards is available. At each step the
image of the current estimate of the optimal
value function under a Monte-Carlo approxi-
mation to the Bellman-operator is projected
onto some function space. PAC-style bounds
on the weighted LP-norm approximation er-
ror are obtained as a function of the covering
number and the approximation power of the
function space, the iteration number and the
sample size.

1. Introduction

In this paper we consider fitted value iteration (FVI)
for solving expected total discounted reward, large
state space, finite action Markovian Decision Prob-
lems (MDP) under the assumption that the model is
unknown, but a generative model of the MDP is avail-
able.

Value iteration is the process of computing an approx-
imation of the optimal value function by means of
the iteration Vi1 = TV, where T is the so-called
Bellman-operator. FVI is an extension of value it-
eration that can work in infinite or very large state
spaces. FVI generates a series of value functions
Vo,Vi,...,Vk,... such that Vi, is obtained by pro-
jecting TV}, or an approximation of it, onto a space
of functions, F. FVI is a special form of approzimate
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value iteration (AVI), which is a generic scheme where
the iterates are given by Viyy1 = TV + €. Typical
results relate the asymptotic error of approximating
the optimal value function in terms of the properties
of error series {ex}. When some bound on the error se-
ries impose a bound on the asymptotic approximation
error then the iteration is called stable.

The origins of AVI date back to the early days of
dynamic programming, e.g. (Samuel, 1959; Bellman
& Dreyfus, 1959). Recent theoretical results concern
supremum-norm approximation errors (Gordon, 1995;
Tsitsiklis & Van Roy, 1996). The main underlying
insight in these analysis is that if v € (0,1) is the
discount factor of the MDP and if A represents the
operator that maps value functions to the space of
functions of interest and if A is 4'-Lipschitz w.r.t. the
supremum-norm then the composite operator AT is a
contraction provided that vy’ < 1 since in discounted
problems T is a contraction with contraction factor
~. Thus the iterates Vi1 = ATV}, are guaranteed to
converge.

Both of the above papers assume that the controlled
system is known. In Section 7.2 of (Tsitsiklis & Van
Roy, 1996) it is mentioned that the AVI can be ex-
tended to use Monte-Carlo approximation, but no the-
oretical analysis is presented there. In (Singh et al.,
1995) the convergence of Q-learning is considered with
“soft state-aggregation” (i.e. here the model is not as-
sumed to be known), whilst in (Szepesvéari & Smart,
2004) a more efficient, Rao-Blackwellised version of
this algorithm was proposed and proven to yield con-
vergent estimates.

The above results all concern approximations in the
supremum-norm.  However, it is both unrealistic
and unnecessary to require good uniform approxi-
mation over the whole state space. In this arti-
cle, we consider bounds on the approximation error
in terms of weighted L”(u) norms, with ||f|l,, =
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([|f()[Pdu)/P, where p is a probability distribution
over the state space X and p > 1.

Previous work on weighted-norm stability analysis in-
cludes a stability result for linear function approxima-
tion and weighted Euclidean norms (defined over the
finite dimensional parameter space) that is presented
in Section 6.8 of (Bertsekas & Tsitsiklis, 1996b).

More recently, stability results in L? norm were de-
rived for approximate policy iteration (Munos, 2003)
and AVI (Munos, 2005), assuming the knowledge of
the MDP. In this paper we extend these results to the
case when the model of the MDP is not given explic-
itly, but only a simulation device is available. Further,
we obtain bounds for weighted LP-norms for any fixed
p > 1. Results of Statistical Learning Theory are used
to relate the complexity of the function space and the
sample size required to obtain a randomized policy
whose value function is within a specified tolerance e
of the optimal value function with high probability.

2. Outline of the Algorithm, Results

Sampling based fitted value iteration proceeds as fol-
lows: Let Vi, € F be the approximation of the optimal
value function at stage k. A Monte-Carlo estimate of
the image of Vj under the Bellman-operator underly-
ing the MDP is computed at selected random points:

Here ¢ = 1,2,...,N, X1,..., Xy are sampled from
some distribution p defined over the state space X,
for each of these states {X;}1<i<n and for each pos-
sible action ¢ € A, YjXW € X, and R;(“a € R,
7 =1,2,..., M, are drawn using the generative model
of the MDP. The next iterate V41 is obtained as the
best fit in F to the data (X;, V(X;), i = 1,2,...,N,
in the sense of minimizing the empirical error

N
Vit1 = argminz |F(X) — V(X))

eF i—1

(2.1)

This iteration is repeated K times. Our main result is
that under suitable conditions for large enough values
of N, M, and K, the performance V™% of the policy
7w induced by the approximation Vi is close to the op-
timal value function V* with high probability, i.e. for
any § > 0,€ > 0, there exists K = O(p 10g( Rimax/ (e(1—
M), N = ORL.(1/e)log(N/d), M =
O(R2,,./€*1og(N|A|/8)) such that

P (||V* V> e) <4,
p is a distribution over X, and N is an appropriate
covering number and Ry,ax is a bound on the (random)

immediate rewards. We also derive a similar result on
the performance of a randomized approximation of 7.

We consider two variants of this algorithm: In the
single-sample variant a single sample X;, Yin’a, RJX"”‘I,
i=1,...,N, 7 =1,...,M is drawn during the ini-
tialization of the algorithm and is used in all the K
iterations. In the multi-sample variant a new sample
is drawn in each of the K iterations, independently of

the previous samples.

3. Preliminaries

Due to the lack of space we cannot give a rigourous
definition of MDPs, but introduce only the necessary
notation. Readers not familiar with MDPs are referred
to (Bertsekas & Tsitsiklis, 1996b). We consider MDPs
with a measurable state space X and a finite action
space A. The state space can be finite, countable or
uncountable. For simplicity we shall assume that X
is a measurable subset of R? for some d > 0. We
assume that there exists a sampling device that can
generate the MDP’s transitions and rewards for any
state-action pair (z,a) € X x A. We shall denote by
P(dy|z,a) (S(dr|z,a)) the transition probability ker-
nel (resp., reward distribution).

Given an MDP, the goal is to find a (deterministic)
stationary policy 7 that maximizes the expected total
discounted reward given any initial state. The dis-
count factor is denoted by 7 (0 < v < 1). The optimal
expected total discounted reward when the process is
started from state x shall be denoted by V*(z), and
V* is called the optimal value function. A policy is
called optimal, if it attains the optimal values V*(z)
for any state x € X.

Let us denote the space of bounded measurable func-
tions with domain X by B(X'). Further, the space of
measurable functions bounded by Vi,ax < 400 shall
be denoted by B(X; Vinax)-

A deterministic stationary policy w : X — A gives
rise to the transition probability kernel P™(dy|xz) =
P(dy|z,n(z)), from which two related operators are
derived: a right linear operator P™- : B(X) — B(X),
defined for any bounded function V' € B(X) by

(PTV)(z) = [ V(y)P"(dylx),
and a left linear operator -P™ : M(X) — M(X), where
M (X) is the space of all probability distributions over
X, defined by

(uP™)(dy) = [ P (dyfoulae)

for p € M(X). The product of two kernels P™ and
P7™ is defined by
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(P™ P2 (dzl) = / P (dy|x) P (dzly).

We say that a (deterministic stationary) policy 7 is
greedy w.r.t. a function V € B(X) if, for all z € X,

n(z) € arg max{r(z, @) + 7 / V(y)P(dylz, a)}.

where r(z,a) = [ 2S(dz|z,a) is the expected reward
of executing action a in state x, and is assumed to be
a bounded measurable function.

For any function V, such a greedy policy always exists
because the maximum value in the previous equation
is always reached, since A is finite.

4. Approximating the Bellman-operator
Define the Bellman-operator T': B(X) — B(X) by

(V) (@) = max{r(e.a) +7 [ VPGl a))

where V' : X — R is an arbitrary, bounded measurable
function. Under mild conditions the unique fixed-point
of T is the optimal value function, V* (Bertsekas &
Shreve, 1978). Further, the value-iteration algorithm,
Vi1 = TV, with an arbitrary Vo € B(X) yields a
sequence of functions V) that converge to V*. Note
that if r(z,a) is bounded by Rpyax > 0 then V* is
bounded by Ryax/(1—7) and if Vo € B(X; Riax/(1—
7)) then also Vi, € B(X; Rmax/(1 —7)).

Let us now fix an appropriate space of bounded mea-
surable functions, F. At this level of generality F
could be any subset of B(X). Typical choices would
be e.g. a parameterized class of functions:

F={foeBX)|0cO}

with either a linear (fp(z) = 07¢(z)) or non-linear
parameterization (fo(z) = f(z;6)), such as in the case
of neural-networks.

FVI works by projecting the iterates Vj, onto the space
F. In order to make this specific, let us pick any dis-
tribution p over the state space X and fix p > 1. As-
suming for a moment that the metric projection of TV
onto F w.r.t. the u-weighted LP-norm,

HFTV = argmin || f =TV, .
feF ’

exists, FVI can be described as the algorithm that gen-

erates the iterates Vi1 = IIzTVj.

FVI per se is not a practical algorithm when X is infi-
nite. This is because II TV, cannot be computed an-
alytically except in a few special cases. Besides, notice

that computing (T'V)(x) itself involves an integration
over the infinite state space X.

Let us now consider the approximate computation of
1TV by Monte-Carlo integration. As in the previous
section, let X1,..., Xy be ani.i.d. sample drawn from
the distribution p and for each actiona € A, 4,1 <i <
N let {(RJX"’“,YJ-X“G)} be an i.i.d. sample of M pairs,
where iji’a ~ P(dy|X;,a), and RJX“G ~ S(dr|X;,a).
Pick any function V' € B(X; Vinax) and define the N
values

M
X a Xi,a
(2] VY (2] ]
VO = D[R V0
1=1,2,...,N. Let
p
= argmmz ‘f Xi) (4.1)
fer i=1

For the sake of simplicity, we shall assume that the
minimizer in Equation (4.1) exists.! This assumption
simplifies the proofs, but it is by no means essential
for our results.

Central to our proofs will be Pollard’s inequality
that gives conditions under which, for i.i.d. samples
{X;}i=1,..n, the sample averages 1/N Zf\il f(X;) ap-
proximate the expectation E[f(X7)] wuniformly over
the space of functions F. If F is finite, such a result
follows by union bounds and exponential inequalities.
When F is infinite, an appropriate and well-known
measure of the ‘size’ of F is given by the covering num-

ber of F: Let otV & (71,...,2n5) € XN be fixed. Fix
€ >0, ¢ > 1. The (¢, q)-covering number (or covering
number) of F(z1'N) = {(f(z1),...,f(zNn))| f € F}
is the smallest integer m such that F(x!'N) can be
covered by m balls of the normed-space (RY,| - [|,)
with centers in F(z'V) and radius N'/%¢. The
(€, q)-covering number of F(x1") shall be denoted by
Ny (e, F(x1*N)). When g = 1, we use N instead of V.
When X5V are i.i.d. with common underlying distri-
bution p then E [N (e, F(X'V))] shall be denoted by
N,y(e, F, N, ).

In what follows we shall make the following regularity
assumptions regarding the MDP:

Assumption A0 [MDP Regularity] The MDP
(X, A, P, S, ~) satisfies the following conditions: X is
a measurable subset of some Euclidean space, A is fi-
nite, the discount factor ~y satisfies 0 < v < 1. The re-
ward kernel S is such that the immediate reward func-
tion r is a bounded, measurable function, with bound

!This holds e.g. if F is closed. Note that for many pop-
ular choices, such e.g. for neural-networks with continuous
transfer functions, F is not closed.
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Rmax. Further, the support of S(-[x,a) is included in

[— Rmax; Bmax] independently of (z,a) € X x A.

The following result holds true:

Lemma 4.1. Fizp > 1, u € M(X). Let Assump-
tion A0 hold and let Vipax = Rmax/(1 — ), V €
B(X; Vinax) and let V' be defined as in Equation (4.1).
Assume that F C B(X;Vpax). Fix €, > 0 and as-
sume that F 1is such that the error of approximating
TV by F is not larger than €/5:

def

E,(TV;F) = filelgc If=TV],, <e€/5. (4.2)

N = O(V2 (1/0% log(N (ce, 7. N.)/3)) and
M = O((Rmax + 7Vmax)?/e?1log(N|A|/S) then
P (HV’ -1V, > e) < 0. Here ¢ > 0 is a constant

independent of the parameters of the MDP and the
function space.

We remark that N appears on both sides of its defin-
ing equation. For specific choices of F (such as e.g.
when F is linearly parameterized with a bounded pa-
rameter space, or when F is the space of appropri-
ately restricted neural networks (Anthony & Bartlett,
1999)) the covering number A will not depend on N,
but log A will depend on the dimensionality d of the
state space X (the dependence is typically of the order
O(logd), O(d) or O(dlogd), cf. e.g. (Zhang, 2002; An-
thony & Bartlett, 1999)). Hence follows the existence
of a lower bound that is polynomial in 1/e, log(1/4),
Vmaxa Rmaxy and IOg(‘ADQ

In the above result V is assumed to be a determin-
istic function. However, the result continues to hold
even if V is random such that V(w) € F holds for all
w € Q (here Q is the sample space). This extension is
needed for the analysis of the single-sample variant of
the algorithm. In order to appreciate the difference be-
tween these two variants consider bounding the prob-
ability of the error of the kth iteration of the multi-
sample variant. In this case, due to the independence
of samples used in subsequent iterations, Lemma 4.1

can be used to bound P <||V;€+1 —TVill, . > e|D;€)7
where D, denotes the samples used to obtain
the kth iterate. Since P (HVk+1 =TVl . > 6) =

E {IP (HVk—s-l = TVill,, > €|Dk>} this yields directly a
bound on the probability of the error due to sampling,
introduced in the kth iteration. In the single-sample
variant the above argument does not work since the

2There are cases when A can be bounded independently
of d and with a linear dependence on N, see e.g. (Zhang,
2002). The above conclusion still remains valid in this case.

same single sample-set is used throughout all the it-
erations. Hence, for analyzing the behavior of the
single-sample variant we need a new result. Define
Fr— ={f-Tg|f € F,g € F}. The result that we
need is as follows:

Lemma 4.2. The result of the previous lemma con-
tinues to hold if V =V (w) € F is random and if N =
O(V2, (1/€) log(N (ce, Fr_, N, 1) /5)) and M =
O((Rmax + ’yvmax)Q/EQ 1Og(8N|A|N(CI€7 *7:3 M? :U’)/(s)7
where ¢, > 0 are constants independent of the pa-
rameters of the MDP and the function space F.

An example when the covering numbers corresponding
to the space Fr_ can be bounded is when X is com-
pact, F = {fy|0 € ©}, O is compact and the mapping
H : 0 — fyis Lipschitz with coefficient L when viewed
as a mapping between the normed spaces (0, ||-||) and
(B(X),L*>). In this case a standard argument allows
us to bound the covering numbers of Fr_ in terms of
the covering numbers of F.

Note that many popular choices of function approxi-
mators meet the requirement that H is Lipschitz. Con-
sider for example linear function approximators tak-
ing the form f; = 67¢ with a suitable basis func-
tion ¢ : X — R?. Straightforward calculations yield
that [|07¢ — 03¢ . = sup,ex|(bs — b2, ¢(2))] <
61 — 62|, sup,e v [|#(2)]|,. Hence, by choosing the ¢
norm in the space ©, we get that 6 — 67 ¢ is Lipschitz
with coefficient ||[|¢(-) (|5l -

5. Main Results

Assume that Vp € F and let 7 be a greedy policy
w.r.t. the approximate Vi, where Vj is generated by
the sampled FVI algorithm. Our main result makes
use of one of the following assumptions:

Assumption A1l [Uniformly stochastic transitions].
There exists a constant C' > 0 such that, for all z € X,
and all policy stationary, deterministic 7,

PT(-|z) < Cu().

Assumption A2 [Smooth future state distribu-
tion]. There exists a distribution p and coefficients
{e(m)}m>1 such that for all m > 1 and policies
T1yeesTim,

pP™ P™2 . PT™ < ¢(m)p,
and the series Y ., my™ 'c(m) converges. Under
Assumption A2 the constant C is redefined as follows:

C=(1-7)> Z my™ Le(m).

m>1
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Assumption Al was introduced in (Munos, 2003) in
finite state spaces for approximate policy iteration. In
the Euclidean space considered here, assuming that
the transition probability kernel P(dy|z,a) admits a
density representation p(y|z,a) w.r.t. the Borel mea-
sure, Assumption Al holds for example if the density
p(:|-,-) is uniformly bounded by some constant 3, un-
der p being the Borel measure. Such an example is
illustrated in the numerical experiment below.

Assumption A2 is weaker than Al. Al requires
that the transitions be somehow uniformly stochas-
tic. Thus, a pure deterministic MDP would not sat-
isfy A1l. However, such a deterministic MDP may
satisfy A2 if the future state transition distribution
is smooth compared to the initial distribution. In-
deed, A2 implies that for any sequence of policies
T1,...,Tm, the discounted future state distribution
starting from p is bounded by a constant C' times
e (L=, s my" '"P(Xy, € BlXg ~ p, Xj ~

P(|X;—1,m(Xi21)), 1 <i<m, X~ p) < Cu(B).

An example of MDP for which A2 holds but not Al is
the chain walk MDP described in (Munos, 2005).

These assumptions enable us to bound the perfor-
mance error V*—V 7% by a function of the LP(u) norm
of the approximation errors Vi1 — TVy (k < K) due
to sampling and approximation in the space F:
Theorem 5.1. Fixp>1, u€ M(X) and Vo € F C
B(X; Vinax). Let Assumption A0, Al hold. Let € >
0,0 > 0 be arbitrary. Assume that F is such that the
worst-case approzimation error of functions {TV |V €
F} satisfies

(1—=7)%
sup E,(TV; F) < .
Vel.;‘ a )< 4C

Then there exist integers K, M and N such that K =
O(log(Vinax/(e(1 — 7)*)/log(1/7))), N, M are poly-
nomial in 1/6 log(1/5)7 log(l/(l - ’Y)); ‘/Inaxy Rmax:
log(|.A]), log(N (ce(1—+)?/C, F, 1)) for some constant
c > 0, such that,

P(v* -

(5.1)

VTR >€) <6

Now, let Assumptions A0, A2 with (p,u,C), and (5.1)
hold with C replaced by C'/P. Then there exist inte-
gers K, M and N such that K = O(log(Vipax/(e(1 —
v)?)/1og(1/7))), N, M are polynomials in 1/e,
1Og(1/6)7 log(l/(l - 7))7 Vmax; RmaX7 10g(|A|)7
log(N (ce(1—7)%/CY/P), F 1) for some constant ¢ > 0,

such that,
PV =V, >¢) <6

The results hold for both the single-sample and the
multi-sample variants.

5.1. Approximation Power

Let X be a compact subset of a d-dimensional
Euclidean space and consider the problem of ap-
proximating functions bounded by some constant
Vinax > 0. Let {F,} be a series of function
spaces such that the ‘complexity’ of F,, increases
with n. Typical examples would be classes where
n is proportional to the number of parameters in
a parameterized class of functions. Consider the
space of Viax-bounded, Lipschitz-continuous func-
tions UrsoLip(a; L) = Urso{f € B(X)||fll

Vinax, [f(@) = f(y)] < Lz —y[|” } (a > 0). For clas-
sical approximation classes, Jackson’s theorem shows
that E (L) = SUPgeLip(a;z) M rer, I _9||p,,¢ <
¢ = O(Le™ /). We shall call an approximation class

{F.} universal if for any L there exists an index ng
such that for n > ng E, (L) < e.

As an immediate corollary of Theorem 5.1 we have the
following result:

Corollary 5.2. Fizp > 1, p € M(X). Let X be
a compact subset of a Euclidean space and consider
an MDP satisfying Assumption AQ. Further, let As-
sumption Al hold. Fiz e > 0, 6 > 0. Let {F,} be
a universal approximation class such that the cover-
ing numbers N (e, F,, N, u) are bounded and the depen-
dency of these covering numbers on N is o(N), F,, C
B(X; Vimax).- Then there exist an index ng such that
for any n > ng then there exist integers K, N, M that
are polynomial in 1/e, 10g(1/6), 1/(1=7), Vinax, Rmax
log(|A), log(N (ce(1 — )2 /CYP F, 1)) for some ¢ >
0, such that if Vi, is generated by the multi-sample sam-
pling based FVI then P(||[V* — V7| >¢€) < §. An
analogous result holds for the single-sample variant.

5.2. Randomized Policies

Call an action a a-greedy w.r.t. the function V and
state z if r(z,a) +v [ V(y)P(dy|z,a) > (TV)(z) — a.
Given Vi and a state z € X we can use sampling to
determine an a-greedy action with high probability. In
particular, let wg » be the policy computed as follows:
Draw M samples (RY", V") of reward-next-state
pairs (R} ~ S(:,x ) YI "~ P(-|z,a)) and compute

QM/(SC Cl Z{Rma+7VK(Ym a)}
Jj=1
Let 7K » select arg max,e 4 Qu (7, a).
result holds

Theorem 5.3. Let M’ be O(|A| R, /a?log(|A]/N)).

If p,u, F are such as in Theorem 5.1 then under
Assumptions A0 and Al, if o = (1 — )2Y/P~1e/4,
A = €(1—7)/(4Viax), then there exist integers K, N, M
that are polynomial in 1/e, log(1/8), 1/(1 — ), Viax,

The following
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Ruax, 10g(lA]), log(N(ce(1 — ~)2/CYP), F, 1)) for

some ¢ > 0, such that

P

where 71'5)\ is a policy that selects a-greedy actions
w.r.t. the function Vi with probability at least \.

K
LA

Oo>e)§(57

An analogous result in L, ,, norm holds under Assump-
tions A0 and A2.

Note that there exists better algorithms than the
above described ‘naive’ algorithm for computing
nearly greedy actions with high probability, e.g. the
Median Elimination Algorithm by (E. Even-Dar &
Mansour, 2002).

We remark that using an entirely analogous reasoning,
it is possible to extend Theorem 5.2 so that 7% is
replaced by ﬁ(f , With suitable chosen «, A. Due to
space constraints we do not give this result here.

6. Numerical Experiment

We now illustrate the sampling based FVI algo-
rithm on a simple one-dimensional optimal replace-
ment problem, described e.g. in (Rust, 1996). The
state variable z; € R, measures the accumulated uti-
lization (such as the odometer reading on a car) of a
durable. By convention, x; = 0 denotes a brand new
durable. At each discrete time step t, there are two
possible decisions: either keep (a; = K) or replace
(a; = R) the durable. This latter action implies an
additional cost S of selling the existing durable and
replacing it for a new one. The transition to a new
state occurs with the following exponential densities:
p(y|z,a = K) = e PU=2(y > z) and p(y|z,a = R) =
e PYI(y > 0). The reward function (opposite of a cost)
is r(z,a = K) = —c(x) (we assume that c(z) is an
increasing function) and r(z,a = R) = —C — ¢(0).
The optimal value function solves the Bellman Opti-
mality Equation. From this it is possible to derive
an analytical expression of the optimal value function:

Vi(@) = [T L1 — ye POy — LB 1y <

T) + %(?H(a: > ), where T is the unique solution to

T
C = / (y) (1- 'ye*ﬁ(lfwy)dy.
o 1=

The optimal policy is 7*(x) = K if z € [0,Z], and
™(z) =R if z > T.
Numerical Results

We chose the numerical values v = 0.6, 3 = 0.5, C =
30, ¢(x) = 4x. Thus, here T ~ 4.8665 and the optimal

value function (see Figure 1) is

V() = { —10z + 30(eo~i<m—f> —1), if z<3

—10z, if z>7.
We consider linear approximation of the value func-
tion using polynomials of degree L. In order the the-
ory to work we would need to put a bound on the
weights (since otherwise the covering numbers become
unbounded). However, for the sake of simplicity we
did not impose any such bounds in these experiments.

In the numerical study, we modify the problem so that
its state space becomes [0, Tmax], With Zpax = 10:
if the next state y happens to be outside of the do-
main (i.e. Yy > Zmax) then the durable is replaced
immediately, and a new state is drawn accordingly
to the choice of action R. By the choice of Zpyax,
f::;ax p(dy|z, R) is negligible and Zy,,x > T. Hence the
optimal value function of the altered problem closely
matches that of the original problem over [0, Zyax]-

We chose the distribution g to be uniform over the
state space [0, Tmax|. The transition density functions
p(+|x, a) are bounded by 3, thus Assumption Al (hence
also Assumption A2) holds with C = Bxax = 6.

x=10

x=0 x=‘4.867
T

Sampled points

LR T,

Optimal value function

Figure 1. lllustration of Sampling based FVI at two itera-
tions steps (up: k = 2, down: k = 20). The dots represent
the N = 100 sampled points and their values (averaged
over M = 10 samples), the grey curve is the best fit (among
polynomials of degree L = 4) and the thin black curve is

the optimal value function.
Figure 1 illustrates two value iteration steps (k = 2 and

k = K = 20) of the sampling based FVT algorithm: the
dots represents the points {X,}1<n<n for N = 100
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samples drawn from distribution g and the average
values {V(X,)}1<n<n (over M = 10 samples). The
black curve is the best fit (minimizing the least square
error to the data) in F (for L = 4) and the grey curve
is the optimal value function.

Table 1 shows the L., approximation errors ||[V* —
Vi||oo for different values of the number of sampled
states IV, the number of sampled next states M, and
the degree L of the polynomials used for the approxi-
mations.?

From Table 1 we observe that for a specific value of NV,
when the degree of the polynomials increases, the ap-
proximation error decreases first (because of richer ap-
proximation spaces) but eventually increases because
of overfitting. The overfitting effect decreases with the
number of samples N, M, as expected.

Table 1. Approximation error of the optimal value function
as a function of number of states IV, the number of samples
M, and the degree L of the fitting polynomials

N | M [ L]V = Vil
100 10 2 3.08914
100 10 3 2.41143
100 10 4 1.22714
100 10 | 10 2.03977

1000 | 1000 | 4 0.783369
1000 | 1000 | 10 0.563451
1000 | 1000 | 20 0.346433
1000 | 1000 | 30 0.207297

7. Conclusions

We considered sampling based FVI for discounted,
large (possibly infinite) state space, finite action
Markovian Decision Problems where only a generative
model of the problem is available. The algorithm com-
putes an approximate metric projection of the image of
the recent iterate under a Monte-Carlo approximation
to the Bellman operator to some function space. PAC-
style bounds on the weighted p-norm approximation
error are obtained as a function of the covering num-
ber and approximation power of the function space,
the iteration number and the sample size.

We combined results of approximation theory,
learning theory and dynamic programming to
show that sampling based FVI can be used to
compute approximately optimal actions in time

3Although Table 1 shows the approximation errors
[[V* — Vk||so, @ bound on the performance error ||V* —
V™ || of using the greedy policy mx w.r.t. Vi may
be obtained from the usual Lo result ||V — V7K || <
||V = Vi|loo (cf. (Bertsekas & Tsitsiklis, 1996a)).

O(|A|R2 ../ 10g(|A|Vinax/(e(1 — 7)))) after an ini-
tialization phase that needs sample sizes that depend
polynomially on 1/e, log(1/4), log(1/(1 — 7)), Viax;

Rax, log(]A]), and the logarithm of the covering num-
bers of the function space involved.

This is in contrast to earlier results e.g. those ob-
tained in (Kearns et al., 1999) where the dependence
on 1/(1—+) is exponential. On the other hand, due to
the inherent difficulty of regression, for specific choices
of the function approximation method (e.g. linearly
parameterized methods) our bounds will suffer from
the curse of dimensionality. For such high dimensional
spaces, the methods would need to be extended with
appropriate dimension reduction techniques.

On the other hand, the performance of the algorithm
could also be improved by other means. One such
possibility is to change the number of samples by the
iteration index, the intuition being that early in the
iteration a cruder approximation to T suffices. An-
other possibility is to speed up the calculations by
adapting the number of samples M at each sample
X; along the lines of the algorithms in (E. Even-Dar
& Mansour, 2002). In addition, our analysis could
be extended to the study of approximate policy itera-
tion. It seems to be possible to derive results similar
to those obtained here but for the learning scenario
when only a single sample path of a given policy is
available. We believe that the results presented here
can be used as the basis of building up a whole class
of new results where tools of dynamic programming,
Monte-Carlo integration/simulation, classification, re-
gression are combined to prove the soundness of prac-
tical algorithms.

8. Appendix

In this Appendix we give the ideas of some of our re-
sults. The full proofs can be found in the extended
version of this paper.

8.1. Proof of Lemma 4.1

Proof. The main idea of the proof is as follows:
Let ¢’ > 0 be arbitrary and let f* be such that
|f*=1V|,, <infrer|f-TV],, + €’ Define the

empirical norm ||-||,, . by

N
1718 = % S
=1

The following sequence of inequalities holds with prob-
ability at least 1 — 4:
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||V’—TV||]W < ||V'—TV||p,ﬂ+e' (8.1)

< WV =Vlpa+2¢  (82)

< = Vllpa+2¢ (83)

< IfF =TV, +3€ (84)

< =TV, +4€  (8.5)

It follows then  that ||V’ — TV|| <
infrer||f =TV, , +4€ +€" with probablhty at least

1 — 4. Since €’ > 0 was arbitrary, it also follows that
V' =1v|,, <infrer ||f =TV, +4€ with prob-
ability at least 14 Now, the deswed result follows
since by Equation (4.2), infrer ||f =TV, , < €/5,
so choosing €’ = ¢/5 can be used to finish the proof.

The proof of (8.3) follows due to the choice of V' since
V' = Vl|pa < ||If = Vllp. holds for all functions f
from F and thus the same inequality holds for f* € F,
too. Next one proves that each of (8.1),(8.2),(8.4) and
(8.5) hold with probability at least 1 — ¢’ with ¢’ =
d/4. Pollard’s inequality can be used to prove (8.1)
and (8.5), whilst Hoeffding’s inequality can be used
to prove (8.2), (8.4): Hoeffding’s inequality is used
to obtain a bound on the probability of the error of
approximating (TV)(X;) by V(X;), whilst Pollard’s
inequality is used to obtain a similar result for the error
of approximation of ||V’ — V”g,u (vesp. [[f* =TV} )
by [V = V[ 5 (vesp. [Lf* =TV ). O
8.2. Proof of Lemma 4.2

Proof. The proof is analogous to that of Lemma 4.1,
the only difference is that at appropriate places in
the proof where e.g. | f—TV|, , appear, we use
|f —Tgll,, and take a supremum over g € F. Asare-
sult, instead of Hoeffding’s inequality we use Pollard’s
inequality to derive bounds for (8.2) and (8.4). O

8.3. Proof of Theorem 5.1

The main idea is that iteration (2.1) may be written
Vi+1 = TVj, + €, where ¢ is the approximation er-
ror of the Bellman-operator applied to V;, due to sam-
pling. The proof of Theorem 5.1 follows directly from
Lemma 4.1 and the next result (which makes use of
Assumptions Al and A2 like in (Munos, 2005)).

Lemma 8.1. For any n > 0, there exists K that
is linear in log(1/n) (and log Viax) such that, if the
L, , norm of the approximation errors is bounded
by some €, ie. |ekll,, < € forall 0 < k < K,
then given Assumption Al (resp Assumption A2),

we have |[V*—-V7E| < (1 7 sCe + n. (resp.
||V* _ VTrKHp,p < (1277)201/176 + 77)
Acknowledgement: Csaba Szepesvari was sup-

ported by OTKA Grant T047193 and by the Bolyai

Fellowship of the Hungarian Academy of Sciences.
References

Anthony, M., & Bartlett, P. (1999). Neural network learn-
ing: Theoretical foundations. Cambridge, UK: Cam-
bridge University Press.

Bellman, R., & Dreyfus, S. (1959). Functional approxima-
tion and dynamic programming. Math. Tables and other
Aids Comp., 18, 247-251.

Bertsekas, D. P., & Shreve, S. E. (1978). Stochastic optimal
control, the discrete time case. Academic Press.

Bertsekas, D. P., & Tsitsiklis, J. (1996a).
programming. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996b). Neuro-
dynamic programming. Athena Scientific, Belmont, MA.

E. Even-Dar, S. M., & Mansour, Y. (2002). PAC bounds
for multi-armed bandit and Markov decision processes.
Fifteenth Annual Conference on Computational Learn-
ing Theory (COLT) (pp. 255-270).

Gordon, G. J. (1995). Stable function approximation in
dynamic programming. Proceedings of the Twelfth In-
ternational Conference on Machine Learning (pp. 261—
268). San Francisco, CA: Morgan Kaufmann.

Kearns, M., Mansour, Y., & Ng, A. (1999). A sparse
sampling algorithm for near-optimal planning in large
Markovian decision processes. Proceedings of IJCAI’99
(pp. 1324-1331).

Munos, R. (2003).

Neuro-dynamic

Error bounds for approximate policy

iteration.  19th International Conference on Machine
Learning, 560-567.

Munos, R. (2005). Practical ~ bounds
for approximate value iteration.

www. cmap. polytechnique.fr/ munos/papers/avi.ps.

Rust, J. (1996). Numerical dyanmic programming in eco-
nomics. In H. Amman, D. Kendrick and J. Rust (Eds.),
Handbook of computational economics. Elsevier, North
Holland.

Samuel, A. (1959). Some studies in machine learning us-
ing the game of checkers. IBM Journal on Research
and Development, 210-229. Reprinted in Computers
and Thought, E.A. Feigenbaum and J. Feldman, editors,

McGraw-Hill, New York, 1963.

Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforce-
ment learning with soft state aggregation. Proceedings of
Neural Information Processing Systems 7 (pp. 361-368).
MIT Press.

Szepesvari, C., & Smart, W. (2004). Interpolation-based
Q-learning. Proceedings of the International Conference
on Machine Learning (pp. 791-798).

Tsitsiklis, J. N., & Van Roy, B. (1996). Feature-based
methods for large scale dynamic programming. Machine
Learning, 22, 59-94.

Zhang, T. (2002). Covering number bounds of certain
regularized linear function classes. Journal of Machine
Learning Research, 2, 527-550.



