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1. Causal Inference from Observational Data 3. Proposed Method

Idea: Representation learning does not (and should not) remove selection bias completely

Goal: Finding a model that estimates the Individual Treatment Effect: ITE(x) = y!(x) — y°(x)

Importance Sampling Weighting on top of Representation Learning

- Incorporate context-aware weights in the factual loss term.

from an observational dataset in the form of {|x;, t;, ¥il}i=1n

with: X: personal features

- e.g., values of age, blood work, etc.

t: received treatment chosen from a set of options Proposed Model )f)—) netﬁ%rk
- e.g., { 0: medication, 1: surgery} Architecture: t
y: the observed outcome after receiving the corresponding treatment netul;:orks
- e.g., survival time — —M
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1. Partial information data. depending on the received treatment t, we observe (factual outcome y?)

. . ' ility of assigning treatment t given the con in representation
either y° or y1, but never both. The other outcome (counterfactual outcome y™t) is unobservable. where (] ¢(x)) is the probability of assigning treatment ¢ given the contextin ¢ representatio

space (a.k.a., propensity score).

2. Selection bias. both outcome y and the = R . : Ezé :Zg i:‘ergfcz’t}iom - We use Logistic Regression (LR) with parameters [W, b] to fit the propensity score function:
treatment t assignment are dependent on E " , ﬁt=1[if'3;tsurgery] 1
(some) context information x. i B + ~t=0[if got medication] || | * (t | (I)( ) ) 1+e —(2t=1)(®(x)-W+b)
~ ®
- e.g., younger {older} patients ( part ; e Yot ot + 4, i:
. . 0 o . .*' . “. ’ ¢+:" +¢*+‘|‘ < e e .

of x ) are more likely to receive Ll . t T f}” and learn the parameters by minimizing: mm —ZC W, b, ®(z),t]

treatment ¢ : surgery {medication} |- 4 + :r:: * l::;f_-'_g}{ thote o

because they tend to have a faster > N CoaTe

) y where C| W, b, ®(x),t| = — log| w(t;|P(x;)) |
{complicated} recovery ( outcome y ). X (€.0., age)

We try to solve this multi-objective optimization problem alternatively, repeating the two steps:

i. Minimize J(h, ¢) to update the parameters of the representation ¢ and hypothesis h networks

2. Related Work |

Minimize C[W, b, ¢, t] with fixed h and ¢ parameters to update parameters of the propensity

score function (i.e., W and b).

Representation Learning:

Reducing the selection bias by learning a common representation space ¢(x) such that:
=2 Pr(¢(x)|t=0) and Pr(¢(x) |t = 1) are as close as possible to each other
-> provided that ¢p(x) retains enough information to accurately predict factual outcomes

4. EXperiments

Evaluation Criteria: EATE —

- by a learned hypothesis network for each treatment arm (i.e., h*(x) ) that estimates PEHE —

the corresponding outcomes
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| + e o 7 ; + +++*¢ d( > > 3 P o+ T Hyperparameter Selection: As counterfactual outcomes are inherently unobservable,
. +
" + + it is not possible to use standard internal cross-validation to select hyperparameters (e.qg., a, A etc.).
/)Q N —> An estimation of the true effect is needed as a surrogate for the e term.
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Shalit et al. [2017] used the observed outcome yj;) of the nearest neighbor (1-NN) in the

E 0’0

** We also considered outcome predicted by the Bayesian Additive Regression Trees (BART)

x space (referred to as 1-NN) in the alternative treatment group £; ;) = —t; = 1 — ¢;

[Shalit et al., 2017]'s argmin J(h,®) = arg mm [ Z Wi - (D(x;)), yi ]
approach: h® Benchmarks:
+ - IPMG( {q)(xz)}z £ =0, {@(azz)}z p—1 ) Infant Health and Development Program (IHDP)  Atlantic Causal Inference Conference 2018 (ACIC’18)
 The observational study is sub-sampled from ¢ The x matrix is sub-sampled from the Linked Birth
+ A R(h) ] an RCT by removing a non-random subset of and Infant Death Data (LBIDD)
5 the treated population * The ys are synthesized by the challenge organizers
where L] & (P(x;)), yi | = [hti (P(x;)) — yz] > factual loss * Includes 747 instances with 25 covariates * Includes 100,000 instances with 177 features
t; 1 —t;
= with v = — t; = Pr(t=1
w K =t Z ) 5. Results
_ 1 _ Pr(ti) | 1—Pr(?;) ~ 1 Pr(ﬁti)
Pl"( ti ) Pl"( ti ) Pl"( t; ) PT( ti ) We compare performance of four methods:

1-NN: One nearest neighbor method for finding the counterfactual outcomes

BART: Bayesian Additive Regression Trees method [Chipman et al., 2010]

CFR: CounterFactual Regression method proposed in [Shalit et al., 2017]

RCFR: Re-weighted CFR [Johansson et al., 2018]

CFR-ISW: CounterFactual Regression with Importance Sampling Weights (our method)

IPMG( {(I)(xz)}z t; =05 {(I)(%)}z t/i:l) - Integral Probability Metric (IPM) is a
measure of distance between two probability distributions (e.g., Maximum Mean Discrepancy (MMD)
[Gretton et al., 2012]), here between empirical Pr( ¢p(x) |t =0) and Pr(¢(x) |t = 1) distributions
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Once the model is trained, use it to predict y° and y!, given as input a feature vector x

Comparison of ENORMSE, PEHE, and bias of ATE (lower is better)
on the IHDP benchmark according to various hyperparameter
selection criteria: P1: PEHE, \, PB: PEHEg,r;, and EB: ENORMSE o+

Aggregated ENoRMSE (lower is better) on the ACIC’18
benchmark. Hyperparameters for both CFR and CFR-ISW
methods are selected according to ENORMSE ,q;

- Gives the individual treatment effect ITE(x) = y'(x) — y°(x) for any (novel) x
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