

CounterFactual Regression with Importance Sampling Weights (CFR-ISW)

Negar Hassanpour (hassanpo@ualberta.ca) and Russell Greiner Department of Computing Science, University of Alberta Alberta Machine Intelligence Institute (Amii) Edmonton, Alberta, Canada

1. Causal Inference from Observational Data

3. Proposed Method

Goal: Finding a model that estimates the <u>Individual Treatment Effect</u>: $ITE(x) = y^{1}(x) - y^{0}(x)$ from an observational dataset in the form of $\{[x_i, t_i, y_i]\}_{i=1:n}$

> with: **x**: personal features

> > \rightarrow e.g., values of age, blood work, etc. *t*: received treatment chosen from a set of options

- \rightarrow e.g., { **0**: medication, **1**: surgery}
- y: the observed outcome after receiving the corresponding treatment
 - \rightarrow e.g., survival time

Idea: Representation learning does not (and should not) remove selection bias completely **Importance Sampling Weighting on top of Representation Learning**

→ Incorporate <u>context-aware weights</u> in the factual loss term.

Challenges:

- **<u>Partial information data</u>**. depending on the received treatment t, we observe (factual outcome y^t) either y^0 or y^1 , but never both. The other outcome (counterfactual outcome y^{-t}) is <u>un</u>observable.
- 2. <u>Selection bias</u>. both outcome y and the treatment *t* assignment are dependent on (some) context information **x**.

→ *e.g.*, **younger {older}** patients (part of x) are more likely to receive treatment *t* : surgery {medication} because they tend to have a faster **{complicated}** recovery (outcome y).

2. Related Work

Representation Learning:

Reducing the selection bias by learning a common representation space $\phi(x)$ such that:

where $\pi(t \mid \phi(x))$ is the probability of assigning treatment t given the context in ϕ representation space (a.k.a., propensity score).

 \rightarrow We use Logistic Regression (LR) with parameters [W, b] to fit the propensity score function:

$$\pi(t | \Phi(x)) = \frac{1}{1 + e^{-(2t-1)(\Phi(x) \cdot \mathbf{W} + \mathbf{b})}}$$

and learn the parameters by minimizing: $\min_{\mathbf{W},\mathbf{b}} \frac{1}{n} \sum_{i=1}^{n} C[\mathbf{W},\mathbf{b},\Phi(x),t]$

where $C[W, \mathbf{b}, \Phi(x), t] = -\log[\pi(t_i | \Phi(x_i))]$

We try to solve this multi-objective optimization problem alternatively, repeating the two steps:

- Minimize $J(h, \phi)$ to update the parameters of the representation ϕ and hypothesis h networks
- Minimize $C[W, b, \phi, t]$ with fixed h and ϕ parameters to update parameters of the propensity ii. score function (*i.e.*, **W** and **b**).

4. Experiments

- \rightarrow Pr($\phi(x) | t = 0$) and Pr($\phi(x) | t = 1$) are as close as possible to each other
- \rightarrow provided that $\phi(x)$ retains enough information to accurately predict factual outcomes
- \rightarrow by a learned hypothesis network for each treatment arm (*i.e.*, $h^t(x)$) that estimates the corresponding outcomes

where
$$L[h^{t_i}(\Phi(x_i)), y_i] = [h^{t_i}(\Phi(x_i)) - y_i]^2 \rightarrow$$
 factual loss

$$\omega_{i} = \frac{t_{i}}{u} + \frac{1 - t_{i}}{(1 - u)}, \quad \text{with} \quad u = \frac{1}{n} \sum_{i=1}^{n} t_{i} = \Pr(t = 1)$$

$$1 \qquad \Pr(t_{i}) \qquad 1 - \Pr(t_{i}) \qquad \Pr(\neg t_{i})$$

Evaluation Criteria:

$$\epsilon_{\text{ATE}} = \left| \text{ATE} - \widehat{\text{ATE}} \right|$$

$$\text{PEHE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{e}_i - e_i)^2}$$

$$\text{ENORMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\hat{e}_i}{e_i}\right)^2} \quad \text{with} \quad \begin{cases} \hat{e}_i = \hat{y}_i^1 - \hat{y}_i^0 \\ e_i = y_i^1 - y_i^0 \end{cases}$$

where $\hat{y} = [\hat{y}^0, \hat{y}^1]$ indicates an outcome predicted by the trained model

Hyperparameter Selection: As counterfactual outcomes are inherently unobservable,

it is not possible to use standard internal cross-validation to select hyperparameters (e.g., α , λ etc.).

- \rightarrow An estimation of the true effect is needed as a surrogate for the *e* term.
 - Shalit *et al.* [2017] used the observed outcome $y_{i(i)}$ of the nearest neighbor (1-NN) in the

x space (referred to as 1-NN) in the alternative treatment group $t_{i(i)} = \neg t_i = 1 - t_i$

We also considered outcome predicted by the Bayesian Additive Regression Trees (**BART**)

Benchmarks:

Infant Health and Development Program (IHDP)

- The observational study is sub-sampled from an RCT by removing a non-random subset of the treated population
- Includes 747 instances with 25 covariates

Atlantic Causal Inference Conference 2018 (ACIC'18)

- The *x* matrix is sub-sampled from the Linked Birth and Infant Death Data (LBIDD)
- The ys are synthesized by the challenge organizers
- Includes 100,000 instances with 177 features

$\operatorname{Pr}(t_i)^{\top} \operatorname{Pr}(t_i)$ $\overline{\Pr}(t_i)$ $\Pr(t_i)$

 $\operatorname{IPM}_G(\{\Phi(x_i)\}_{i: t_i=0}, \{\Phi(x_i)\}_{i: t_i=1}) \rightarrow \operatorname{Integral Probability Metric (IPM) is a}$ measure of distance between two probability distributions (e.g., Maximum Mean Discrepancy (MMD) [Gretton *et al.*, 2012]), here between empirical $\Pr(\phi(x) | t = 0)$ and $\Pr(\phi(x) | t = 1)$ distributions

Once the model is trained, use it to predict y^0 and y^1 , given as input a feature vector x

 \rightarrow Gives the individual treatment effect ITE $(x) = y^1(x) - y^0(x)$ for any (novel) x

Selected References:

BART: Bayesian Additive Regression Trees. The Annals of Applied Statistics, 2010. [Gretton *et al.*, 2012] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola. A Kernel Two-sample Test. JMLR, 13(Mar):723–773, 2012.

[Chipman et al., 2010] Hugh A Chipman, Edward I George, and Robert E McCulloch.

- [Johansson et al., 2018] Fredrik D Johansson, Nathan Kallus, Uri Shalit, and David Sontag. Learning Weighted Representations for Generalization Across Designs. arXiv preprint *arXiv:1802.08598*, 2018.
- [Shalit *et al.*, 2017] Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating Individual Treatment Effect: Generalization Bounds and Algorithms. ICML, 2017.

We compare performance of four methods:

- 1-NN: One nearest neighbor method for finding the counterfactual outcomes
- **BART**: Bayesian Additive Regression Trees method [Chipman *et al.*, 2010]
- **CFR**: CounterFactual Regression method proposed in [Shalit *et al.*, 2017]
- **RCFR**: Re-weighted CFR [Johansson *et al.*, 2018]
- **CFR-ISW**: CounterFactual Regression with Importance Sampling Weights (our method)

Comparison of ENORMSE, PEHE, and bias of ATE (lower is better) on the **IHDP** benchmark according to various hyperparameter selection criteria: **P1**: PEHE_{1-NN}, **PB**: PEHE_{BART}, and **EB**: ENORMSE_{BART}

	METHODS	ENORMSE	PEHE	ϵ_{ATE}
	1-NN BART	$\begin{array}{c} 24.6(189) \\ 2.13(11.3) \end{array}$	$\begin{array}{c} 4.85 \scriptscriptstyle{(6.29)} \\ 1.57 \scriptscriptstyle{(2.41)} \end{array}$	$\begin{array}{c} 0.67(1.27)\\ 0.22(0.30) \end{array}$
	CFR [†] RCFR [‡]		$\begin{array}{c} 0.78(0.0\)\\ 0.65(0.04)\end{array}$	$0.31_{(0.01)}$
P1	CFR CFR-ISW	$\begin{array}{c c} 2.65 \scriptscriptstyle (1.67) \\ 3.82 \scriptscriptstyle (3.17) \end{array}$	$\begin{array}{c} 0.88 \ (0.10) \\ \textbf{0.77} \ (0.10) \end{array}$	$\begin{array}{c} 0.20(0.03)\\ \textbf{0.19}(0.03) \end{array}$
PB	CFR CFR-ISW	$\begin{array}{c} 1.87(1.29) \\ 2.50(2.05) \end{array}$	$\begin{array}{c} 0.65 \ (0.05) \\ \textbf{0.55} \ (0.05) \end{array}$	$\begin{array}{c} 0.21 \ (0.03) \\ \textbf{0.20} \ (0.03) \end{array}$
EB	CFR CFR-ISW	$\begin{array}{c} 1.18 \ (0.29) \\ \textbf{0.88} \ (0.29) \end{array}$	$0.84 (0.07) \\ 0.66 (0.05)$	$\begin{array}{c} 0.23 (0.03) \\ \textbf{0.16} (0.02) \end{array}$

Aggregated ENORMSE (lower is better) on the ACIC'18 benchmark. Hyperparameters for both CFR and CFR-ISW methods are selected according to ENORMSE_{BART}

DATASETS		1-NN	BART	CFR	CFR-ISW			
	ALL	54.56	9.35	5.43 (5.78)	1.03(0.27)			
S	$1 \ k$	66.70	73.66	7.08 (8.97)	1.54(0.87)			
CE	2.5 k	33.31	15.12	$8.33_{(14.78)}$	0.68(0.31)			
AN	5 k	31.89	8.15	2.00 (2.28)	0.88(0.35)			
ST	$10 \ k$	31.46	2.60	0.86 (1.00)	$0.74_{(0.39)}$			
IN	25 k	19.47	1.27	0.85 (0.30)	1.00(0.28)			
#	50 k	75.43	12.27	8.23 (8.63)	1.13(0.23)			
	Entries in bold indicate significantly better performance (Welch's unpaired t-test with α=0.05)							