
Idea: Representation learning does not (and should not) remove selection bias completely

Importance Sampling Weighting on top of Representation Learning
→ Incorporate context-aware weights in the  factual loss  term.

Proposed Model

Architecture:

We compare performance of four methods: 

➢ 1-NN: One nearest neighbor method for finding the counterfactual outcomes

➢ BART: Bayesian Additive Regression Trees method [Chipman et al., 2010] 

➢ CFR: CounterFactual Regression method proposed in [Shalit et al., 2017]

➢ RCFR: Re-weighted CFR [Johansson et al., 2018]

➢ CFR-ISW: CounterFactual Regression with Importance Sampling Weights (our method)

Aggregated ENoRMSE (lower is better) on the ACIC’18 
benchmark. Hyperparameters for both CFR and CFR-ISW 

methods are selected according to ENoRMSEBART

Comparison of ENoRMSE, PEHE, and bias of ATE (lower is better) 
on the IHDP benchmark according to various hyperparameter 

selection criteria: P1: PEHE1-NN, PB: PEHEBART, and EB: ENoRMSEBART

Evaluation Criteria:

where ෝ𝒚 = [ෝ𝒚𝟎, ෝ𝒚𝟏] indicates an outcome predicted by the trained model

Hyperparameter Selection: As counterfactual outcomes are inherently unobservable,

it is not possible to use standard internal cross-validation to select hyperparameters (e.g., 𝜶, 𝝀 etc.).

→ An estimation of the true effect is needed as a surrogate for the 𝒆 term.

❖ Shalit et al. [2017] used the observed outcome 𝒚𝒋(𝒊) of the nearest neighbor (1-NN) in the

𝒙 space (referred to as 1-NN) in the alternative treatment group 𝒕𝒋(𝒊) = ¬𝒕𝒊 = 𝟏 − 𝒕𝒊

❖ We also considered outcome predicted by the Bayesian Additive Regression Trees (BART)

Benchmarks:
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2. Selection bias. both outcome 𝒚 and the

treatment 𝒕 assignment are dependent on

(some) context information 𝒙.

→ e.g., younger {older} patients ( part

of 𝒙 ) are more likely to receive

treatment 𝒕 : surgery {medication}

because they tend to have a faster

{complicated} recovery ( outcome 𝒚 ).
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Challenges:

1. Partial information data. depending on the received treatment 𝒕, we observe (factual outcome 𝒚𝒕)

either 𝒚𝟎 or 𝒚𝟏, but never both. The other outcome (counterfactual outcome 𝒚¬𝒕 ) is unobservable.

Goal:   Finding a model that estimates the  Individual Treatment Effect:  𝐈𝐓𝐄 𝒙 = 𝒚𝟏(𝒙) − 𝒚𝟎(𝒙)

from an observational dataset in the form of  𝒙𝒊, 𝒕𝒊, 𝒚𝒊 𝒊=𝟏:𝒏

with: 𝒙: personal features 

→ e.g., values of age, blood work, etc.

𝒕: received treatment chosen from a set of options 

→ e.g., { 0: medication, 1: surgery}

𝒚: the observed outcome after receiving the corresponding treatment

→ e.g., survival time

where  𝝅 𝒕 𝝓 𝒙 ) is the probability of assigning treatment 𝒕 given the context in  𝝓 representation 

space (a.k.a., propensity score). 

→We use Logistic Regression (LR) with parameters [W, b] to fit the propensity score function:

and learn the parameters by minimizing:

where

We try to solve this multi-objective optimization problem alternatively, repeating the two steps:

i. Minimize  J(𝒉,𝝓) to update the parameters of the representation  𝝓 and hypothesis  𝒉 networks

ii. Minimize  C[W, b, 𝝓, 𝒕] with fixed  𝒉 and  𝝓 parameters to update parameters of the propensity 

score function ( i.e.,  W  and b ). 
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Representation Learning:
Reducing the selection bias by learning a common representation space  𝝓(𝒙) such that:

→ 𝐏𝐫 𝝓 𝒙 𝒕 = 𝟎 ) and  𝐏𝐫 𝝓 𝒙 𝒕 = 𝟏 ) are as close as possible to each other

→ provided that 𝝓(𝒙) retains enough information to accurately predict factual outcomes

→ by a learned hypothesis network for each treatment arm ( i.e., 𝒉𝒕(𝒙) ) that estimates

the corresponding outcomes

5. Results

4. Experiments

1. Causal Inference from Observational Data

2. Related Work

Infant Health and Development Program (IHDP)

• The observational study is sub-sampled from 
an RCT by removing a non-random subset of 
the treated population

• Includes 747 instances with 25 covariates

Atlantic Causal Inference Conference 2018 (ACIC’18)

• The 𝒙 matrix is sub-sampled from the Linked Birth 
and Infant Death Data (LBIDD)

• The 𝒚s are synthesized by the challenge organizers
• Includes 100,000 instances with 177 features

[Shalit et al., 2017]’s

approach:

where → factual loss

→ Integral Probability Metric (IPM) is a

measure of distance between two probability distributions (e.g., Maximum Mean Discrepancy (MMD)

[Gretton et al., 2012]), here between empirical 𝐏𝐫 𝝓 𝒙 𝒕 = 𝟎 ) and 𝐏𝐫 𝝓 𝒙 𝒕 = 𝟏 ) distributions

Once the model is trained, use it to predict  𝒚𝟎 and 𝒚𝟏, given as input a feature vector 𝒙

→ Gives the individual treatment effect  𝐈𝐓𝐄 𝒙 = 𝒚𝟏(𝒙) − 𝒚𝟎(𝒙) for any (novel) 𝒙

Entries in bold indicate significantly better performance
(Welch’s unpaired t-test with α=0.05)

3. Proposed Method
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