Learning to Use a Learned Model: A Two-Stage Approach to Classification™

Maria-Luiza Antonie
Dept. of Computing Science
University of Alberta, Canada
luiza@cs.ualberta.ca

Abstract

Association rule-based classifiers have recently emerged
as competitive classification systems. However, there are
still deficiencies that hinder their performance. One defi-
ciency is the use of rules in the classification stage. Cur-
rent systems assign classes to new objects based on the
best rule applied or on some predefined scoring of multi-
ple rules. In this paper we propose a new technique where
the system automatically learns how to use the rules. We
achieve this by developing a two-stage classification model.
First, we use association rule mining to discover classifica-
tion rules. Second, we employ another learning algorithm
to learn how to use these rules in the prediction process.
Our two-stage approach outperforms C4.5 and RIPPER on
the UCI datasets in our study, and outperforms other rule-
learning methods on more than half the datasets. The ver-
satility of our method is also demonstrated by applying it
to text classification, where it equals the performance of the
best known systems for this task, SVMs.

1 Introduction

Classification is an important task in many applications.
A classifier is a system that assigns, or predicts, one or more
class labels for a given object. One way to create a classifier
is to use a learning algorithm to construct a classifier from
a training set of objects whose classification(s) is known.

Associative classifiers [2, 18, 19] consist of a set of rules,
with each rule predicting that an object belongs to a specific
class if it has certain properties. The rules are discovered
using association rule mining algorithms [1]. The associ-
ation rule mining problem has been thoroughly studied in
the data mining community [13], thus there are several fast
algorithms for discovering these types of rules.

*This work was partially funded by Alberta Ingenuity Fund, Informat-
ics Circle of Research Excellence (iCORE) and Natural Sciences and En-
gineering Research Council of Canada (NSERC).

Osmar R. Zaiane
Dept. of Computing Science
University of Alberta, Canada
zaiane @cs.ualberta.ca

Robert C. Holte
Dept. of Computing Science
University of Alberta, Canada
holte @cs.ualberta.ca

To classify a given object, an associative classifier pro-
ceeds in three steps. First, it determines which of its rules
apply to the object. Then it selects a subset of the applica-
ble rules (possibly all of them) based on some measure of
their “strength” or precedence. Finally, if it chooses more
than one rule, it combines the class predictions of all the
selected rules to produce a final classification.

For example, CBA [19] classifies an object using only
the highest ranking rule that applies to the object, where
rank is defined by the rule’s confidence on the training set.
This method has two shortcomings. The first is that by bas-
ing its classification on only the highest ranking rule, CBA
might be ignoring a large number of high ranking, appli-
cable rules that might agree with each other and disagree
with the highest ranking rule. Secondly, because each rule
predicts just a single class, CBA is incapable of assigning
a given object to multiple classes simultaneously, which is
essential in some applications.

CMAR [18] and ARC [2] overcome CBA’s shortcomings
by selecting the K highest ranking applicable rules, not just
the first. The key issue now is, how to combine the class
predictions of the selected rules to produce a final classifica-
tion? Both systems use a weighted voting scheme, they dif-
fer in the details of how weights are calculated. CMAR uses
a chi-square weighting scheme, while ARC weighs classes
based on the average confidence of the selected rules that
predict that class. These systems trade part of their compre-
hensibility inherited from the association rules for improved
performance. This tradeoff is the results of using a weight-
ing score on the rules.

In this paper we also use a weighted voting scheme to
combine the class predictions of the selected rules to pro-
duce a final classification, but instead of pre-defining the
way in which weights are computed, we use a second learn-
ing algorithm to determine the weights. Learning in our
system therefore takes place in two stages. First, an asso-
ciative classifier is learned using standard methods. Second,
predefined features computed on the outputs of the rules in
the learned associative classifier are used as the inputs to a
neural network, which is trained, using a separate training

set, to weigh the features appropriately to produce highly
accurate classifications.

This two-stage system, with a layer of feature definitions
interposed between the output of the first learned system
and the input of the second, is the paper’s main contribution.
Another significant contribution of the paper is the use of
a statistical analysis of the experimental data that is more
rigorous than previous studies.

The performance of our two-stage system is evaluated
experimentally on two distinct classification tasks, single la-
bel classification and multiple label classification. In single
label classification, the task is to assign an object to exactly
one of the classes. This is the standard classification task
studied in machine learning, and a variety of test datasets
and systems are available for comparison. We use twenty
of the UCI datasets[5], and compare our approach to seven
existing systems. Our approach outperforms C4.5 and RIP-
PER on all the datasets in our study, and outperforms the
other rule-learning methods on about half the datasets.

In multiple label classification, an object can be as-
signed to several of the classes simultaneously. The stan-
dard testbed for this task is classifying news articles into
subject categories, where it is necessary for some news ar-
ticles to be assigned to multiple categories. For example,
an article about selling a sports franchise should be put into
at least two categories, “sports” and “business”. The best
known algorithms for this text classification task are SVMs
[16]. Our experiments using the Reuters dataset establishes
our two-stage system as the first classification method to
equal the performance of SVMs on this task.

2 Prerequisites

A classifier is built by applying a learning method to a
training set of objects. This model is further used to predict
the labels to new incoming objects. With all the effort in this
domain there is still place for improvement and a great deal
of attention is paid to develop highly accurate classifiers.

The use of association rule mining for building classifi-
cation models is very new. Recent studies have proposed
the use of association rules in building effective classifiers.
These classification systems discover the strongest associa-
tion rules in the dataset (associating attribute values to class
labels) and use them to build a categorizer.

2.1 Association Rule Mining

Mining association rules from data is the process of find-
ing interesting relationships or associations that exist be-
tween objects in the collection to be mined.

Association rule mining is a data mining task that discov-
ers relationships between items in a transactional database.

Association rules have been extensively studied in the lit-
erature. The efficient discovery of such rules has been a
major focus in the data mining research community, given
their popularity in market basket analysis. From the original
apriori algorithm [1] there have been a remarkable number
of variants and improvements [13].

Formally, association rules are defined as follows: Let
T = {i1,42,...ip } be a set of items. Let D be a set of
transactions, where each transaction 7' is a set of items such
that T C 7. A transaction 7 is said to contain X, a set of
items in Z, if X C T'. An association rule is an implication
of the form “X = Y”,where X CZ,Y CZ,and XNY =
(). The rule X = Y has a support s in the transaction set
D if s% of the transactions in D contain X U Y. In other
words, the support of the rule is the probability that X and
Y hold together among all the possible presented cases. It
is said that the rule X = Y holds in the transaction set D
with confidence c if ¢% of transactions in D that contain X
also contain Y. In other words, the confidence of the rule
is the conditional probability that the consequent Y is true
under the condition of the antecedent X. The problem of
discovering all association rules from a set of transactions
D consists of generating the rules that have a support and
confidence greater than given thresholds. These rules are
called strong rules and represent interesting patterns in data.

2.2 Associative Classifiers

The first reference to using association rules as classifi-
cation rules is credited to [4], while the first classifier us-
ing these association rules was CBA introduced in [19] and
later improved in CMAR [18], and ARC-AC [2] and ARC-
BC [2]. The idea is relatively simple. Given a training set
modelled with transactions where each transaction contains
all features of an object in addition to the class label of the
object, we can constrain the mining process to generate as-
sociation rules that always have as consequent a class label.
In other words, the problem consists of finding the subset of
strong association rules of the form X = C where C'is a
class label and X is a conjunction of features.

The main steps in building an associative classifier when
a training set is given are the following:

1. Modeling the data into transactions.

2. Generating the set of association rules from the train-
ing set: In this phase association rules of the form
set_of features = class_label are discovered by using
a mining algorithm. This step of the algorithm can be
completed in two ways:

o Generating all the strong association rules us-
ing an existing association rule mining algorithm.
Once these rules are generated, filter them so that
only the rules of interest are kept (those that have

as consequent a class label and their antecedent

is composed of features other than class labels).
e Modifying an association rule mining algorithm

by imposing a constraint: the consequent of an
association rule must be a class label. In this
way, a more efficient algorithm is employed since
less candidate items are generated. All candi-
date itemsets generated contain a class label and
only the association rules with a class label on the
right hand side are generated.

CBA and ARC use an apriori-like fashion [1] to gener-
ate the classification rules. CMAR uses an FP-growth
approach [14] for rule generation. All methods impose
a constraint on the rule form such that only classifica-
tion rules are generated.

3. Pruning the set of discovered rules: In the previous
phase a large set of association rules can be generated,
especially when a low support is given. Pruning tech-
niques are used to discover the best subset of rules that
can cover the training set. This phase is employed to
weed out those rules that may introduce errors or are
overfitting in the classification stage. Pruning based on
database coverage (i.e., checking the extent of expo-
sure of rules in the database) has been used by all asso-
ciative classifiers [2, 18, 19]. CMAR proposed reduc-
ing the number of rules by removing low ranked spe-
cialized rules. For other pruning techniques see [29].

4. Classification phase: At this level a system that can
make a prediction for a new object is built. The chal-
lenge here is how to make use of the set of rules from
the previous phase to give a good prediction. Using
the rules to classify a new object means to have a good
way of selecting one or more rules to participate in the
prediction process. CBA classifies a new object with
the class associated to the first rule that is applicable,
which is the rule with the highest confidence. In [18],
the CMAR’s authors argue that making the decision
based on a single rule leads to poor results. They claim
that a decision based on a set of rules is more appropri-
ate since more information is available. In our previous
work [2], we also show that decision making based on
a set of rules has more potential than single-rule based
classification. Not only that the decisions are better
when multiple rules are taken into consideration, but it
also allows us to perform multi-label classification.

We consider that associative classifiers have two stages
where more research is required to fully take advantage of
their capabilities. First, the number of rules generated by
an associative classifiers is very large. Better pruning tech-
niques have to be studied and devised to select a small set
of quality rules. Associative classifiers have the advantage
over other rule-based classification systems that they guar-
antee to find all interesting rules (in the support-confidence

framework). However, more research is required to weed
out those rules that are not useful or even detrimental in the
classification process. Second, the rule selection and their
scoring in the classification process follows either some
naive techniques or use predefined schemes for scoring a
new instance to be classified. However, a good selection
strategy is fundamental for good accuracy.

In this paper, we focus our efforts on improving the clas-
sification phase by automatically learning to use the rules in
the model. Next section gives a detailed description of our
proposed technique.

3 Our Two-Stage Approach to Classification

This section introduces our two-stage classification ap-
proach. Most of the classification techniques work as fol-
lows: given a set of examples with categories attached, a
learning model is developed from a subset of the data (train-
ing set); the model created is then tested and validated on
the remaining data (testing set).

Once developed, the purpose of a classification system is
to classify new instances. In the case of associative classi-
fiers, this step deals with using the rules to categorize a new
object. The next example will describe a rule-base model.
It uses different classification strategies.

Example 1. Table 1 shows a hypothetical rule-based
model that was generated from a given training set using
an association rule learning method. Suppose we are given
an object O to classify that has features A, B, and C. The
subset of rules applicable to O is shown in Table 2.

Table 1. Example of a rule-based model
R1: D = Class 1 - confidence 95%
R2: B A E = Class 2 - confidence 90%
R3: A AD = Class 1 - confidence 90%
R4: A = Class 1 - confidence 85%
R5: A A B = Class 2 - confidence 85%
R6: B = Class 2 - confidence 80%
R7: C = Class 2 - confidence 80%
R8: B A C = Class 3 - confidence 90%
R9: A A C = Class 3 - confidence 70%

Different methods can be used to classify new instances
when a set of rules apply. These rules have measures at-
tached, such as confidence in this example. Let us consider
now different approaches for prediction:

o if we classify by the highest ranked rule that applies
we have to predict Class 3 for O, based on rule RS;

o if we predict the class whose applicable rules have the
highest average confidence, object O will be classified

Table 2. Applicable rules to object O{A,B,C}
(R4) A = Class 1 - confidence 85%
(R5) A A B = Class 2 - confidence 85%
(R6) B = Class 2 - confidence 80%
(R7) C = Class 2 - confidence 80%
(R8) B A C = Class 3 - confidence 90%
(R9) A A C = Class 3 - confidence 70%

as Class 1 (Average of 85% for Class 1; 81.6% for
Class 2 and 80% for Class 3);

o if we classifiy by the largest number of applicable rules
per class, object O will be classified as Class 2.

The preceding prediction schemes are just simple exam-
ples to illustrate that there is not a unique way to combine
the individual conclusions of a set of rules to create a final
classification. The actual schemes used by existing systems
are as follows. CBA [19] classifies a new object with the
class of the highest confidence-based ranked rule. In [18],
the authors use a weighted chi-square over the rules that
apply and chooses the class with the highest score. In our
previous work [2], we base our prediction on a set of rules
by using the average of the confidences. We also experi-
mented with other measures such as cosine measure, Jac-
card coefficient, etc. [22]. Some have also experimented
with the size of the rule [8]. Bagging [7] and boosting [24]
are two ensemble methods that achieve a better classifica-
tion performance by combing the conclusion of multiple
classifiers. These classifiers are generated by using the same
learning method on different distributions of data. Bagging
uses different replicas of the training set, while boosting
uses the same training examples for all the classifiers but
attaches different weights to them. The classifiers gener-
ated are combined by voting to obtain a final decision. In
bagging, all classifiers have equal weight in the voting pro-
cess. Boosting weighs each classifier’s vote by its accuracy
on the training set.

All these methods can be thought of as a weighted voting
schemes, where the weights for each rule, or class, are de-
fined by specific scoring schemes. In this paper we propose
to automatically learn the scoring scheme for weighted vot-
ing after first learning the set of rules. Thus we propose
a two stage learning process. The first stage is standard
association rule mining. When applied to a given object,
this stage produces as output a set of rules that apply to the
object (possibly a subset selected from among all the rules
that apply), along with each rule’s conclusion and associ-
ated measures such as the rule’s confidence. The second
learning stage consists of a neural network whose inputs
are a set of features derived from the first stage output.

Given a data collection for classification purposes, we

Association ARC
Model

trainStage 1
Set Rule Mining

Figure 1. First stage of learning

trainStage2 ARC Set of NN NN
Set Model Features Training Model

Figure 2. Second stage of learning

have a training and a testing set. These sets are either gen-
erated (cross-validation) or are given apriori with the ap-
plication to solve. The associative classification methods
described before learn a set of classification rules from the
training set and then uses them in different fashions (de-
pending on the method employed) to classify the testing set.

Our method to learn to use the generated rules and select
the appropriate ones works as follows:

1. split the training set into two subsets: trainStagel and
trainStage2; given that we have two learning stages in
our technique we need to have enough examples for
both stages; we split the initial training set in two dis-
joints subsets; this ensures the ability of our second
stage to improve the performance of the overall model
without overfitting by learning on the same set as the
first stage;

2. use trainStagel to extract the classification rules using
an association rule mining algorithm; we denote with
ARC Model the discovered set of rules; Figure 1 shows
this step of the algorithm;

3. for each instance in trainStage2, use ARC Model to
collect a set of features (class-based or rule-based);

4. apply a neural network learning (or another learning
method) in this new feature space to learn how to use
the rules in the prediction process; denote the model
generated by the second learning algorithm as NN
Model; Figure 2 shows this step of the algorithm;

5. classify the objects in the testing set using ARC Model
and NN Model combined (see Figure 3); when a new
object has to be classified ARC Model generates the
features for NN Model, which in turn makes the classi-
fication decision;

As one may see from Example 1, to score and make a
decision for a new object is a difficult task. The second

New Instances ARC Set of NN Predicted
& Test Set Model Features Model Classes

Figure 3. Evaluation and classification

learning method in our technique acts as a scoring scheme.
The advantage of using this intermediary step is twofold: it
takes into account more information than using just one or
few rules for prediction; treating the scoring scheme as a
learning problem we create an automated process to learn
it from data (different scoring schemes are automatically
generated for different applications).

Given that there is a numerical scoring scheme that we
have to learn, we chose as the second learning algorithm
a neural network. The network consists of a standard 3-
layer, feedforward neural network whose inputs are the set
of features derived from the first stage output. The num-
ber of outputs equals the number of classes in the applica-
tion, each output neuron corresponding to a class. A logistic
function is used to compute the weights inside the network.
The output of the function ranges from O to 1. When a sin-
gle class has to be predicted for an object the output neuron
(i.e., class) with the highest value is chosen as the winner.
If multiple classes have to be predicted every class above a
threshold is considered a winner.

There are two approaches that we developed and
tested for our two stage associative classification system
(2SARC). They differ in the feature space generated and
are detailed in the following sections.

3.1 2SARCI1: Class-based Features

Given a classification problem that has n classes to be
learned, we use association rules mining to discover clas-
sification rules. Let us consider that our discovered model
consists of N rules, ordered by their confidence and support.
Each rule R; has an associated support o; and a confidence
¢;. When a new instance is to be classified, a subset of K
rules applies R = |J R;, where ¢ C [1..K]. A rule is appli-
cable to a new instance if the antecedent of the rule matches
the new object and its confidence is within the confidence
margin [2]. Naturally, a scoring scheme has to be used in or-
der to make the classification decision. This scoring scheme
has to be a function that represents the strength of the de-
cision and it has to take into account all applicable rules.
The rules are characterized by support, confidence and their
class. The scoring scheme has to produce a score for all the
classes to be considered.

From the set of rules that apply to the new
object, M measures m;, j € [lL.M] can be
computed for each class c¢; that appeared in R
(mi(c1),...,mar(c1), mi(ca),...mpr(cr)). For instance,
these measures could be the average confidence, number
of rules applied and maximum confidence. All these
aggregations are done by class. At this stage each class
will have several measures associated. All these measures
will be the input to the second learning method, which is a
neural network in our case.

Table 3. 2SARC1: class features for object O
Class 1 Class 2 Class 3
avgconf | #rules [| avgconf | #rules [| avgconf | #rules
5 | 1 [86 | 3 || s | 2

Table 4. 2SARC2: rule features for object O
[Rt T R T R [T R& J RS [R6 [RT [R& [R9
795 0 90 O 90] 0| 85 1| 85 1| 80] 1| 80[1] 80[1| 70[I |

Considering Example 1, the features collected for object
O are average confidence and number of rules by class as
shown in Table 3. For each class a set of features is gen-
erated (e.g., Classl: average confidence is 85%, # rules
supporting this class is 1). These class-based features are
generated for the objects in the trainStage2 set. Along with
the class label these features represent now the input to the
second learning stage.

3.2 2SARC2: Rule-based Features

In our previous approach, we collected aggregated mea-
sures per class. These measures represented a new feature
space. From this space a scoring scheme is learned.

In our second approach we learn how to use the rules
in the model instead of learning how to use the measures.
The feature space in this case is represented by the rules.
Given our rule-based ARC model, we input into the second
learning method the characteristics of the rules in the ARC
model. For each new object, a rule either applies or not. We
introduce this information along with the rule’s confidence
into the model for the second stage.

For the example in Table 1, given object O, we can gen-
erate a set of rule-based features as presented in Table 4.
The second learning algorithm has to learn how to use the
rules given these type of features.

Generally, association-based models generate a large
number of rules, thus creating for 2SARC2 a very large
feature space. To reduce the dimension of the feature set
we experimented with choosing only k best rules per class
(e.g., k=2 for our example, R1, R3 for Class 1; R2 and RS
for Class 2; R8 and R9 for Class 3).

Although the architecture of our proposed system may
seem similar to stacking [26] they differ as follows. In
stacking level one is represented by one or more classifica-
tion methods. Their classification results represent the input
space for the second level classifier. In our approaches, the
first level is a rule-based method that discovers classifica-
tion rules. The input to the next level are features generated
using the model built in the first level. This feature layer is
what distinguishes our techniques from stacking.

4 Experiments

First, we evaluated our method against other associative
classifiers and rule-based classification methods on 20 UCI
datasets [5]. Second, we studied the performance of our
system in the text classification context. This type of ap-
plication is more challenging given that the feature space is
very large and it requires multi-label classification (i.e., one
or more class labels are attached to each object to be classi-
fied). UCI datasets are single-label classification problems.

4.1 Single Label Classification

We evaluated our algorithm against other associative
classifiers (see Section 2.2) on several UCI datasets [5].
In addition we compare our method with two rule-based
classification methods (C4.5 rules [21] and RIPPER [9]),
a boosting algorithm [24] and a hybrid between rule-based
methods and associative classifiers (CPAR) [28].

Rule-based classification approaches have been devel-
oped for decades in the machine learning community due to
their readability when compared to other classifiers. These
algorithms use greedy techniques in the rule generation pro-
cess. C4.5 searches the space for the best attribute accord-
ing to the heuristic used, divides the search space according
to the values of the attribute and then continues the process
recursively in those subspaces. Rules are generated follow-
ing the paths that cover the feature space. RIPPER (Re-
peated Incremental Pruning to Produce Error Reduction) [9]
is built upon IREP (Incremental Reduced Error Pruning) al-
gorithm [12]. Following IREP’s strategy, RIPPER splits the
training set in two sets. One of them is used to grow the
rules and the other to prune the rules. The algorithm starts
with an empty rule and it repeatedly adds conditions that
maximize the information gain criterion. Once the rule is
grown, conditions are deleted to maximize a function dur-
ing pruning phase. When a rule has been discovered, all the
examples that are covered by this rule are removed from the
training set. The above process continues to learn rules for
the remaining training set.

CPAR [28] (Classification based on Predictive Associa-
tion Rules) is a hybrid between associative classifiers and
rule-based classifiers that use greedy techniques. It uses a
greedy algorithm to search the space of attributes.The main
difference is that it keeps all close-to-the-best attributes in
rule generation, unlike rule-based methods which use only
the best attribute.

On each UCI dataset we performed C4.5’s shuffle util-
ity [21]. A 10-fold cross validation was performed on each
dataset and the reported results are averages of the accura-
cies over the 10 folds. In addition, we used the same dis-
cretization method for continuous attributes as in [19] to
have a fair comparison with the other algorithms.

All classification methods should be evaluated on the
same randomly generated folds to ensure a fair comparison
of the methods. As the code for CPAR has the cross vali-
dation incorporated and it does not allow one to specify the
folds we could not guarantee that CPAR was evaluated on
the same folds as the other algorithms. CMAR code is not
available. Thus the results presented in our table are the best
results for CPAR and CMAR as reported by their authors.
All the other results were obtained in our study. For CBA
we used the code provided by their authors, while for the
other algorithms (C4.5, RIPPER, boosted RIPPER) we used
their Weka [25] implementations (Weka version 3.4.8). The
parameters for all the algorithms were set to their default
values. Weka’s default settings follow the best parameter
setup as proposed by their respective authors [9, 21].

It is well-known that the support threshold plays a funda-
mental role in association rule discovery. Since associative
classifiers are based on association rule mining they inher-
ited the sensitivity to the support threshold. It is hard to
know apriori the best support threshold and its value is usu-
ally set experimentally. In our evaluation, we ran our al-
gorithms with support values of 1%, 5% and 10% for each
dataset and we reported the best result. The minimum con-
fidence was set to 50% and the confidence margin was set at
10%. Our proposed technique used a split ratio of 50/50 or
75/25 between trainStagel and trainStage2 sets. 2SARC2
technique used 10, 20 or 30 rules per class. The algorithm
used for the second stage was a backpropagation algorithm
with 1 hidden layer. For the backpropagation algorithm we
used Borgelt’s implementation [6]. The number of neurons
in the hidden layer was the average number between the in-
put and output neurons.

Table 5 presents the accuracy of the following methods:
C4.5, RIPPER, boosted RIPPER, CBA, CMAR, CPAR,
ARC and the results for the two techniques proposed in this
paper (2SARCI1 and 2SARC2). Along with the accuracy
result, the name of the dataset, the number of records in the
datasets and the number of classes are given. The standard
deviation is not reported as our statistical analysis uses non-
parametric tests.

2SARCI1 obtains best overall performance for 5 datasets,
followed by CMAR (4 datasets) and C4.5 and boosting (3
datasets each). 2SARC2 performs best on 2 datasets. Rip-
per and CBA are the algorithms that do not have any overall
win. On some datasets the differences in accuracy between
the winner and the second best are quite small (e.g., aus-
tra), while for other the improvement in the performance
is large (e.g., hepati, heart). Some datasets are very small
(e.g., labor, zoo), which unfavours our algorithms given that
we need enough examples for the two learning stages.

2SARCI has the best overall performance, as it can be
see fromTable 5. Table 6 shows the count of wins, losses
and ties for 2SARC1 when compared to the rest of the meth-

Table 5. Accuracy on 20 UCI datasets for several classification methods

dataset | #rec | #cls || ARC | 2SARCI | 2SARC2 || C4.5 | Ripper | BooR | CBA [CMAR | CPAR |
anneal 898 6 97.11 98.01 97.58 89.87 [94.66 | 99.33 | 97.91 9730 | 98.40
austra 690 2 86.23 86.84 81.90 86.96 | 85.80 | 85.80 | 8538 || 86.10 | 86.20
breast 699 2 96.42 | 96.13 95.85 9471 | 9528 | 95.85 | 96.28 || 96.40 | 96.00
cleve 303 2 82.16 83.16 80.15 80.52 | 80.19 | 83.51 | 82.83 || 82.20 | 81.50
crx 690 2 8536 | 85.97 84.51 85.36 | 85.80 | 84.78 | 85.38 || 84.90 | 85.70
diabetes | 768 2 7422 | 7627 75.63 7421 | 7434 | 7395 | 7445 || 75.80 | 75.10
german | 1000 | 2 7320 | 72.50 73.05 71.60 | 71.60 | 71.90 | 73.50 || 74.90 | 73.40
glass 214 6 71.13 72.47 71.05 7147 | 69.70 | 69.70 | 73.90 || 70.10 | 74.40
heart 270 2 80.74 | 84.09 80.39 80.74 | 81.85 | 83.33 | 81.87 || 82.20 | 82.60
hepati 155 2 81.13 85.16 80.21 79.25 | 76.04 | 80.08 | 81.82 || 80.50 | 79.40
horse 368 2 84.23 82.63 81.80 85.04 | 84.23 | 82.89 | 82.36 || 82.60 | 84.20
iris 150 3 95.33 94.67 96.00 94.00 | 94.00 | 94.67 | 94.67 || 94.00 | 94.70
labor 57 2 80.67 86.33 86.33 81.00 | 86.33 | 91.33 | 86.33 || 89.70 | 84.70
led7 3200 | 10 || 71.91 7291 73.66 7419 | 69.31 | 69.31 | 72.06 || 72.50 | 73.60
pima 768 2 74.87 74.34 74.86 73.70 | 73.19 | 73.84 | 72.90 || 75.10 | 73.80
tic-tac 958 2 98.65 | 100.00 99.95 85.60 | 97.71 | 98.33 [99.59 |[99.20 | 98.60
vehicle 846 4 65.02 67.49 64.90 67.04 | 6431 | 68.67 | 68.92 || 68.80 | 69.50
waveform | 5000 | 3 78.28 75.72 77.62 75.08 | 75.04 | 7892 | 79.68 || 83.20 | 80.90
wine 178 3 88.79 95.50 97.18 92.12 | 92.12 | 96.67 | 9496 || 95.00 | 95.50
200 101 7 95.09 91.18 93.18 92.18 | 89.09 | 96.09 | 96.78 || 97.10 | 95.10

Table 6. Method 2SARC1 compared to the
rest of the algorithms on UCI datasets; (*) in-
dicates statistical significant difference

\ | wins | losses | ties |

2SARCI vs. ARC 13 7 0
2SARCI vs. 2SARC2 12 7 1
2SARCI vs. C4.5* 16 4 0
2SARCI vs. Ripper* 18 1 1
2SARCI vs. boostingR 11 8 1
2SARCI vs. CBA 12 6 2
2SARCI1 vs. CMAR 13 7 0
2SARCI vs. CPAR 10 8 2

ods. If we consider the win to loss ratio, the algorithm
second in performance to 2SARCI is CPAR, followed by
boostingR and 2SARC2.

4.1.1 Statistical Analysis

The results presented in Table 5 give some insight in the
performance of the algorithms. However, those results do
not provide enough support for drawing a strong conclusion
in favour or against any of the studied methods. There is no
overall dominance over the entire range of datasets.

To better understand the results of our techniques when
compared to the other classification approaches we per-
formed a statistical analysis of our results. In our experi-
mental study we collected classification results for 9 classi-

fication methods on 20 datasets. In this type of experimental
design a careful consideration has to be given to choosing
the appropriate statistical tools. When a large number of
comparisons is made (i.e., 180 in our design) the likelihood
of finding significance by accident increases. The signifi-
cance level has to be controlled such that it accounts for the
multiple comparisons. This issue is known in statistics as
controlling the family-wise error.

Demsar discusses in [11] the issue of multiple hypothe-
sis testing and recommends the use of several statistical pro-
cedures for this problem. Following Demsar’s recommen-
dation, we first tested if there is any significant difference
among the classification methods studied. Demsar recom-
mends the use of Friedman test to compare several classi-
fiers on multiple datasets.

Let us assume that we have k algorithms to compare on
N datasets. The Friedman test can be applied as follows:

e find rf - the rank of the algorithm j on the ith dataset;
e compute the average rank R of alg. j: R; = % Do rzj

o the null hypothesis states that all algorithms have the
same average rank;

e compute the Friedman statistic:

12N
k(k+1)

k+1)

ZR2

e if chiZ exceeds the critical value we reject the null hy-
pothesis, otherwise we accept it;

—) O

x%:

e when the null hypothesis is rejected a post-hoc test is
used to determine the nature of the difference.

By applying Friedman test [11] we concluded that there
is a significant difference among the methods. Since the
null hypothesis is rejected we have to proceed with further
analysis to better understand the behaviour of the classifica-
tion algorithms. We are interested in the performance of our
proposed technique. Thus, we perform a series of Wilcoxon
signed ranked tests between our best method (2SARCI)
and the other classification methods. Friedman test and
Wilcoxon tests are non-parametric tests, they do not make
any assumptions about the distributions of the values.

For single-label classification results Friedman test finds
significant difference among the classification methods
studied. The only strong conclusion that we can draw when
paired Wilcoxon signed ranked tests are performed is that
2SARCI performs significantly better than C4.5 and Rip-
per. The mixture of wins and losses when compared to the
other algorithms (see Table 6) makes it impossible to single
out one of the algorithms as the best one.

4.2 Multi Label Classification

Associative classifiers are more suitable for categorical
data, rather than numerical. Therefore, text classification is
a good application to study the performance of our method.

Most of the research in text categorization comes from
the machine learning and information retrieval communi-
ties. Rocchio’s algorithm [15] is the classical method in in-
formation retrieval, being used in routing and filtering docu-
ments. Researchers tackled the text categorization problem
in many ways. Classifiers based on probabilistic models
have been proposed starting with the first presented in liter-
ature by Maron [20] and continuing with naive-Bayes [17]
that proved to perform well. ID3 and C4.5 are well-known
packages whose cores are making use of decision trees to
build automatic classifiers [10]. K-nearest neighbor (k-NN)
is another technique used successfully in text categoriza-
tion [27]. Another method to construct a text categoriza-
tion system is by an inductive rule learning method. This
type of classifiers is represented by a set of rules in disjunc-
tive normal form that best cover the training set [3]. In the
last decade neural networks and support vector machines
(SVM) were used in text categorization and they proved to
be powerful tools [16].

We used the ModApte version of Reuters-21578 text col-
lection [23] as benchmark. This split leads to a corpus of
12,202 documents consisting of 9,603 training documents
and 3,299 testing documents, and is the most used split in
the literature. We tested our classifiers on the ten most pop-
ulated categories with the largest number of documents as-
signed to them in the training set. On these documents we
performed stopword elimination but no stemming.

For evaluating the effectiveness of our system we used
F1 measure and precision/recall breakeven point [2]. To
report the performance over multiple classes we used micro-
average and weighted average.

In our experiments, we ran our algorithms with support
values of 10%, 15% and 20% and we reported the best re-
sult. The minimum confidence was set to 50% and the con-
fidence margin was set at 10%. Our proposed technique
used a split ratio of 80/20 between trainStage 1 and train-
Stage2 sets. 2SARC2 technique used 10, 25, 50 or 100
rules per class. The algorithm used for the second stage was
a backpropagation algorithm with 1 hidden layer. The num-
ber of neurons in the hidden layer was the average number
between the input and output neurons.

Table 7 shows the performance for several well-known
text categorizers and our algorithms. The evaluation is done
using precision/recall break-even point. Results are pre-
sented by category for the ten most populous categories
in Reuters collection. Except for our algorithms, the re-
sults are presented as reported in [16]. Given that the
micro-average value for the other algorithms was computed
on a different set of classes we used a weighted average
scheme to approximate the micro-average. The formula for
weighted average is:

PO ﬁ x BEP,
. J
T @)

where N stands for the number of classes and test; rep-
resents the number of test examples in class j.

SVM performs best for 6 out of 10 classes in the Reuters
collection. 2SARCI1 wins in 3 classes, while 2SARC2 gets
the best breakeven point for trade class. SVM ranks first
based on weighted-average and macro-average, followed
closely by 2SARC1. Corn and wheat are two categories
that are difficult to be learned by most classifiers due to their
unique characteristics in this collection; both of them highly
overlap with grain category. Winning overall in this cat-
egories is a good indication for our algorithm that the new
automated scoring is able to pick up data characteristics that
would have been missed by a static scoring scheme.

Table 8 shows the count of wins, losses and ties over the
10 classes in Reuters for 2SARC1 when compared to the
other algorithms. 2SARCI1 losses on 6 categories to SVM.
2SARCI1 outperforms the rest of the algorithms winning in
at least 7 out of the 10 classes.

WA=

4.2.1 Statistical Analysis

We performed the same statistical analysis as discussed in
Section 4.1.1 to the text classification results. Friedman’s
test indicates that the methods evaluated are not equal.
When the Wilcoxon tests are applied to the results of text
classification for pairwise comparisons between 2SARCI1

Table 7. Precision/Recall-breakeven point on ten most populated Reuters categories
| category | #rec || Bayes | Rocchio [C45 | k-NN | SVM || ARC [2SARCI [2SARC2 |
acq 719 91.5 92.1 853 | 920 | 95.2 || 89.9 93.7 81.5
corn 56 47.3 62.2 87.7 | 779 | 852 | 823 88.4 83.3
crude 189 81.0 81.5 755 | 857 | 88.7 || 77.0 83.0 83.5
earn 1087 || 95.9 96.1 96.1 | 97.3 | 984 | 89.2 95.4 87.2
grain 149 72.5 79.5 80.1 | 822 | 91.8 | 72.1 91.1 87.9
interest 131 58.0 72.5 49.1 | 740 | 754 || 70.1 72.8 73.9
money-fx 179 62.9 67.6 694 | 782 | 754 || 724 78.7 73.8
ship 89 78.7 83.1 80.9 | 792 | 86.6 | 732 83.1 71.3
trade 118 50.0 77.4 592 | 774 | 773 69.7 84.9 86.7
wheat 71 60.6 79.4 855 | 76.6 | 85.7 86.5 88.7 85.3
weighted-avg 84.25 | 87.94 | 85.14 | 89.68 | 92.15 || 84.12 | 90.61 83.56
macro-avg 6521 | 79.14 | 77.78 | 82.05 | 86.01 || 78.24 86.0 82.0

Table 8. Method 2SARC1 compared to the
rest of the algorithms on Reuters collection;
(*) indicates statistical significant difference

| | wins [losses | ties |

2SARCI vs. Bayes™ 9 1 0
2SARCI vs. Rocchio™ 8 1 1
2SARCI vs. C4.5* 9 1 0
2SARCI vs. kKNN 7 3 0
2SARCI vs. SVM 4 6 0
2SARCI vs. ARC* 10 0 0
2SARCI1 vs. 2SARC2 7 3 0

and the rest of the algorithms, we can conclude the follow-
ing: 2SARCI is significantly better than Bayes, Rocchio,
C4.5, ARC at a significance level of 0.05. When compared
with SVM, the test can not reject the null hypothesis, thus it
can be stated that 2SARC1 and SVM perform statistically
similar on the Reuters dataset.

5 Discussion

Rule-based classification systems classify a new instance
based on a set of rules that apply to this new object. In
previous works, the scoring schemes under which the sys-
tem takes a classification decision are predefined. In this
paper we proposed a two-stage classification method. Our
system (2SARC) learns automatically the scoring scheme
in the second stage. In addition, we investigate two tech-
niques. 2SARCI learns the scoring scheme from class fea-
tures while 2SARC?2 learns it from rule features.

The proposed system is versatile, it shows good perfor-
mance over a large and different set of applications. We
tested our method for single-label and multiple-label clas-
sification, using both small and large datasets. In addition,

association rule mining is a mature domain with fast algo-
rithms that can handle large dimensionality, thus making the
classification rule discovery fast and reliable.

2SARCI1 performs best on most UCI datasets or it ranks
very close to the best as Table 5 shows. There are only
3 datasets where the performance is much lower than the
best (labor, waveform, zoo). Labor and zoo are very small
datasets with 57 and, respectively, 101 examples. Small
datasets may hinder the performance of our system given
that it needs enough examples to train the models for the
two stages. Waveform is a dataset where all the initial at-
tributes are numerical. Association rules are more suitable
for nominal attributes, thus for this particular dataset the
mining has to rely on the discretization process. The in-
fluence of the discretization process on the performance of
association-rule based systems needs further study.

On Reuters dataset 2SARC1 has good overall perfor-
mance, and excellent results for three categories (corn,
wheat and money-fx). Corn and wheat are two categories
that are highly overlapped with grain. They are hard to learn
by other classifiers (including the state of the art SVM) due
to this characteristic. On top of the overlapping property
they are also two small classes, thus adding the imbalance
issue to the classification process. By automatically learn-
ing the scoring scheme our system can pick up on existing
relations between classes that a pre-defined scoring scheme
would miss (especially if they solved the multi-label prob-
lem as binary subtasks).

Our method has two stages, each stage employing a clas-
sification algorithm. It may appear that the training time is
higher than for each algorithm applied alone or for other
algorithms. This is not necessarily the case, as each stage
uses only a partition of the data.

2SARC?2 shows lower performance than 2SARCI. This
may be due to the limit that we enforce on the number
of rules to be used as features. This constraint is used in

the second stage as neural networks do not handle a large
number of inputs well. A direction to be investigated fur-
ther is the use of other classification methods in the second
stage that would handle better the large dimensionality. In-
corporating all the rules discovered could be of benefit to
2SARC?2 as seen for the iris dataset where 2SARC?2 per-
forms best. The set of rules is very small for this dataset
thus making possible the use of all rules in the second stage.

6 Conclusions

Rule-based classifiers use predefined weighted voting
schemes to combine the class predictions of the applicable
rules. By contrast, the methods described in this paper au-
tomatically learn the scoring scheme. We achieve this by
developing a two-stage system, with a layer of feature def-
initions interposed between the output of the first learning
model and the input of the second. Our two stage classi-
fication with class-based features (2SARC1) shows a good
performance both for UCI datasets and text classification,
under rigorous statistical analysis. The most accurate text
classifier, particularly when multi-label classification is in-
volved, is by far SVM. Our two stage associative classifier
2SARCI is the first to equal its performance on the com-
monly used and challenging Reuters testset.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc.
of SIGMOD, pages 207-216, 1993.

M.-L. Antonie and O. R. Zaiane. Text document categoriza-
tion by term association. In Proc. of ICDM, pages 19-26,
2002.

C. Apte, F. Damerau, and S. Weiss. Automated learning of
decision rules for text categorization. ACM Transactions on
Information Systems, 12(3):233-251, 1994.

R. Bayardo. Brute-force mining of high-confidence classifi-
cation rules. In Proc. of SIGKDD, pages 123-126, 1997.
[5] C. Blake and C. Merz. UCI repos-
itory of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html,

1998.

C. Borgelt. Backpropagation software. http://fuzzy.cs.uni-
magdeburg.de/~borgelt/mlp.html.
L. Breiman. Bagging predictors.
24:123-140, 1996.

F. Coenen and P. H. Leng. An evaluation of approaches to
classification rule selection. In Proc. of ICDM, pages 359—
362, 2004.

W. Cohen. Fast effective rule induction. In Proc. of ICML,
pages 115-123, 1995.

W. Cohen and H. Hirsch. Joins that generalize: text classi-
fication using Whirl. In Proc. of SIGKDD, pages 169-173,
1998.

(2]

(3]

[4]

(6]
(7]

Machine Learning,

(8]

(9]

(10]

10

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]
[26]
[27]
(28]

(29]

J. Demsar. Statistical comparisons of classifiers over multi-
ple datasets. Journal of Machine Learning Research, 7(1):1—
30, 2006.

J. Furnkranz and G. Widmer. Incremental reduced error
pruning. In Proc. of ICML, pages 70-77, 1994.

B. Goethals and M. Zaki, editors. FIMI’03: Workshop
on Frequent Itemset Mining Implementations, volume 90 of
CEUR Workshop Proceedings series, 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns with-
out candidate generation. In Proc. of SIGMOD, pages 1-12,
2000.

D. A. Hull. Improving text retrieval for the routing problem
using latent semantic indexing. In Proc. of SIGIR, pages
282-289, 1994.

T. Joachims. Text categorization with support vector ma-
chines: learning with many relevant features. In Proc. of
ECML, pages 137-142, 1998.

D. Lewis. Naive (Bayes) at forty: The independence as-
sumption in information retrieval. In Proc. of ECML, pages
4-15, 1998.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient
classification based on multiple class-association rules. In
Proc. of ICDM, pages 369-376, 2001.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In Proc. of SIGKDD, pages 80-86,
1998.

M. Maron. Automatic indexing: An experimental in-
quiry. Journal of the Association for Computing Machinery,
8(3):404-417, 1961.

J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

R. Rak, W. Stach, and O. R. Zaiane and M.-L. Antonie. Con-
sidering re-occurring features in associative classifiers. In
Proc. of PAKDD, pages 240-248, 2005.

The Reuters-21578 text categorization test collection.
http://www.research.att.com/~ lewis/reuters21578.html.

R. E. Schapire. Theoretical views of boosting. In Proc. of
European Conference on Computational Learning Theory
(EuroCOLT), pages 1-10, 1999.

I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.
D. H. Wolpert. Stacked generalization. Neural Networks,
5:241-259, 1992.

Y. Yang. An evaluation of statistical approaches to text cat-
egorization. Information Retrieval, 1:69-90, 1999.

X. Yin and J. Han. CPAR: Classification based on predictive
association rules. In Proc. of SDM, 2003.

O. R. Zaiane and M.-L. Antonie. On pruning and tuning
rules for associative classifiers. In Proc. of Int’l Conf. on
Knowledge-Based Intelligence Information & Engineering
Systems (KES’05), pages 966-973, 2005.

