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Abstract The success of kernel-based learning methods depends on the choice of kernel.
Recently, kernel learning methods have been proposed that use data to select the most appro-
priate kernel, usually by combining a set of base kernels. We introduce a new algorithm for
kernel learning that combines a continuous set of base kernels, without the common step of
discretizing the space of base kernels. We demonstrate that our new method achieves state-
of-the-art performance across a variety of real-world datasets. Furthermore, we explicitly
demonstrate the importance of combining the right dictionary of kernels, which is problem-
atic for methods that combine a finite set of base kernels chosen a priori. Our method is
not the first approach to work with continuously parameterized kernels. We adopt a two-
stage kernel learning approach. We also show that our method requires substantially less
computation than previous such approaches, and so is more amenable to multi-dimensional
parameterizations of base kernels, which we demonstrate.

Keywords Two-stage kernel learning · Continuous kernel sets

1 Introduction

A well known fact in machine learning is that the choice of features heavily influences the
performance of learning methods. Similarly, the performance of a learning method that uses
a kernel function is highly dependent on the choice of kernel function. The idea of kernel
learning is to use data to select the most appropriate kernel function for the learning task.
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In this paper, we consider kernel learning in the context of supervised learning. In par-
ticular, we consider the problem of learning positive-coefficient linear combinations of base
kernels, where the base kernels belong to a parameterized family of kernels, (κσ )σ∈Σ . Here,
Σ is a “continuous” parameter space, i.e., some subset of a Euclidean space. A prime ex-
ample (and extremely popular choice) is when κσ is a Gaussian kernel, where σ can be
a single common bandwidth or a vector of bandwidths, one per coordinate. One approach
then is to discretize the parameter space Σ and then find an appropriate non-negative lin-
ear combination of the resulting set of base kernels, N = {κσ1 , . . . , κσp }. The advantage of
this approach is that once the set N is fixed, any of the many efficient methods available in
the literature can be used to find the coefficients for combining the base kernels in N (see
the papers by Lanckriet et al. 2004; Sonnenburg et al. 2006; Rakotomamonjy et al. 2008;
Cortes et al. 2009a; Kloft et al. 2011 and references therein). One potential drawback of this
approach is that it requires an appropriate, a priori choice of N . This might be problematic,
e.g., if Σ is contained in a Euclidean space of moderate, or large dimension (say, a dimen-
sion over 20) since the number of base kernels, p, grows exponentially with dimensionality
even for moderate discretization accuracies. Furthermore, independent of the dimensional-
ity of the parameter space, the need to choose the set N independently of the data is at best
inconvenient and selecting an appropriate resolution might be far from trivial. In this paper
we explore an alternative method which avoids the need for discretizing the space Σ .

We are not the first to realize that discretizing a continuous parameter space might
be troublesome: The method of Argyriou et al. (2005) proposes to combine continuously
parameterized kernels. They present a greedy coordinate descent-type approach to kernel
learning that handles sets with infinitely many kernels. Empirically, they found this approach
to have excellent and robust performance, showing the potential of the idea of avoiding dis-
cretizations.

Our new method is similar to that of Argyriou et al. (2005). In fact, both methods are
instances of the so-called forward-stagewise additive modeling (FSAM) procedure. How-
ever, as opposed to the method of Argyriou et al. (2005), our method belongs to the group
of two-stage kernel learning methods. The decision to use a two-stage kernel learning ap-
proach was motivated by the recent success of the two-stage method of Cortes et al. (2010).
In fact, our kernel learning method uses the centered kernel alignment metric of Cortes et al.
(2010) (derived from the uncentered alignment metric of Cristianini et al. 2002) in its first
stage as the objective function of the FSAM procedure, while in the second stage a standard
kernel-based supervised learning technique is used.

The technical difficulty of implementing FSAM is that one needs to compute the func-
tional gradient of the chosen objective function. We show that in our case this problem is
equivalent to solving an optimization problem over σ ∈ Σ with an objective function that is
a linear function of the Gram matrix derived from the kernel κσ . Because of the nonlinear
dependence of this matrix on σ , this is the step where we need to resort to local optimiza-
tion: this optimization problem is in general non-convex. However, as we shall demonstrate
empirically, even if we use local solvers to solve this optimization step, the algorithm still
shows an overall excellent performance as compared to other state-of-the-art methods. This
is not completely unexpected: One of the key ideas underlying boosting (a close relative of
FSAM) is that it is designed to be robust even when the individual “greedy” steps are imper-
fect (cf., Chap. 12, Bühlmann and van de Geer 2011). Given the new kernel to be added to
the existing dictionary, we give a computationally efficient, closed-form expression that can
be used to determine the coefficient on the new kernel to be added to the previous kernels.

The empirical performance of our proposed method is explored in a series of experi-
ments. Our experiments serve multiple purposes. Firstly, we explore the potential advan-
tages, as well as limitations of the proposed technique. In particular, we demonstrate that
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the procedure is indeed reliable (despite the potential difficulty of implementing the greedy
step) and that it can be successfully used even when Σ is a subset of a multi-dimensional
space. Secondly, we demonstrate that in some cases, kernel learning can have a very large
improvement over simpler alternatives, such as combining some fixed dictionary of kernels
with uniform weights. Whether this is true is an important issue that is given weight by the
fact that just recently it became a subject of dispute (Cortes 2009). Finally, we compare the
performance of our method, both from the perspective of its generalization capability and
computational cost, to its natural, state-of-the-art alternatives, such as the two-stage method
of Cortes et al. (2010) and the algorithm of Argyriou et al. (2005). For this, we compared
our method on datasets used in previous kernel learning work. To give further weight to our
results, we compare on more datasets than any of the previous papers that proposed new
kernel learning methods.

Our experiments demonstrate that our new method is competitive in terms of its gener-
alization performance, while its computational cost is significantly less than that of its com-
petitors that enjoy similarly good generalization performance as our method. In addition,
our experiments also revealed an interesting novel insight into the behavior of two-stage
methods: we noticed that two-stage methods can “overfit” the performance metric of the
first stage. In some problem we observed that our method could find kernels that gave rise
to better (test-set) performance on the first-stage metric, while the method’s overall perfor-
mance degrades when compared to using kernel combinations whose performance on the
first metric is worse. The explanation of this is that metric of the first stage is a surrogate
performance measure and thus just like in the case of choosing a surrogate loss in classifica-
tion, better performance according to this surrogate metric does not necessarily transfer into
better performance in the primary metric as there is no monotonicity relation between these
two metrics. We also show that with proper capacity control, the problem of overfitting the
surrogate metric can be overcome. Finally, our experiments show a clear advantage to using
kernel learning methods as opposed to combining kernels with a uniform weight, although
it seems that the advantage mainly comes from the ability of our method to discover the
right set of kernels. This conclusion is strengthened by the fact that the closest competitor
to our method was found to be the method of Argyriou et al. (2005) that also searches the
continuous parameter space, avoiding discretizations. Our conclusion is that it seems that
the choice of the base dictionary is more important than how the dictionary elements are
combined and that the a priori choice of this dictionary may not be trivial. This is certainly
true already when the number of parameters is moderate. Moreover, when the number of
parameters is larger, simple discretization methods are infeasible, whereas our method can
still produce meaningful dictionaries.

2 The new method

The purpose of this section is to describe our new method. Let us start with the introduction
of the problem setting and the notation. We consider binary classification problems, where
the data D = ((X1, Y1), . . . , (Xn,Yn)) is a sequence of independent, identically distributed
random variables, with (Xi, Yi) ∈ R

d × {−1,+1}. For convenience, we introduce two other
pairs of random variables (X,Y ), (X′, Y ′), which are also independent of each other and
they share the same distribution with (Xi, Yi). The goal of classifier learning is to find a
predictor, g : R

d → {−1,+1} such that the predictor’s risk, L(g) = P(g(X) �= Y ), is close to
the Bayes-risk, infg L(g). We will consider a two-stage method, as noted in the introduction.
The first stage of our method will pick some kernel k : R

d × R
d → R from some set of
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kernels K based on D, which is then used in the second stage, using the same data D to find
a good predictor.1

Consider a parametric family of base kernels, (κσ )σ∈Σ , in which Σ could have infinitely
many members, such as an interval of real numbers. The kernels considered by our method
belong to the set

K =
{

r∑
i=1

μiκσi
: r ∈ N,μi ≥ 0, σi ∈ Σ, i = 1, . . . , r

}
,

i.e., we allow non-negative linear combinations of a finite number of base kernels. For ex-
ample, the base kernel could be a Gaussian kernel, where σ > 0 is its bandwidth:

κσ

(
x, x ′) = exp

(
−‖x − x ′‖2

σ 2

)
,

where x, x ′ ∈ R
d . However, one could also have a separate bandwidth for each coordinate.

The “ideal” kernel underlying the common distribution of the data is

k∗(x, x ′) = E
[
YY ′ ∣∣ X = x,X′ = x ′].

Our new method attempts to find a kernel k ∈ K which is maximally aligned to this ideal
kernel, where, following Cortes et al. (2010), the alignment between two kernels k, k̃ is
measured by the centered alignment metric,2

Ac(k, k̃)
def= 〈kc, k̃c〉

‖kc‖‖k̃c‖
,

where kc is the kernel underlying k centered in the feature space (similarly for k̃c), 〈k, k̃〉 =
E[k(X,X′)k̃(X,X′)] and ‖k‖2 = 〈k, k〉. A kernel k centered in the feature space, by defini-
tion, is the unique kernel kc , such that for any x, x ′,

kc

(
x, x ′) = 〈

Φ(x) − E
[
Φ(X)

]
,Φ

(
x ′) − E

[
Φ(X)

]〉
,

where Φ is a feature map underlying k. By considering centered kernels kc , k̃c in the align-
ment metric, one implicitly matches the mean responses E[k(X,X′)], E[k̃(X,X′)] before
considering the alignment between the kernels (thus, centering depends on the distribution
of X). An alternative way of stating this is that centering cancels mismatches of the mean
responses between the two kernels. When one of the kernels is the ideal kernel, centered
alignment effectively standardizes the alignment by cancelling the effect of imbalanced class
distributions. For further discussion of the virtues of centered alignment, see Cortes et al.
(2010).

Since the common distribution underlying the data is unknown, one resorts to empirical
approximations to alignment and centering, resulting in the empirical alignment metric,

Ac(K, K̃) = 〈Kc, K̃c〉F
‖Kc‖F ‖K̃c‖F

,

1One could consider splitting the data, but we see no advantage to doing so. Also, the methods for the second
stage are not a focus of this work and the particular methods used in the experiments are described later.
2Note that the word metric is used in its everyday sense and not in its mathematical sense.
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where,

K = (
k(Xi,Xj )

)
1≤i,j≤n

, and

K̃ = (
k̃(Xi,Xj )

)
1≤i,j≤n

are the kernel matrices underlying k and k̃ respectively, and for a kernel matrix, K ,

Kc = CnKCn,

where Cn is the so-called centering matrix defined by Cn = In×n − 11�/n, In×n being the
n × n identity matrix and 1 = (1, . . . ,1)� ∈ R

n. The empirical counterpart of maximizing

Ac(k, k∗) is to maximize Ac(K, K̂∗), where K̂∗ def= YY�, and Y = (Y1, . . . , Yn)
� collects the

responses into an n-dimensional vector. Here, K is the kernel matrix derived from a kernel
k ∈ K. To make this connection clear, we will write K = K(k).

Define f : K → R by f (k) = Ac(K(k), K̂∗). Our goal is to find an approximate maxi-
mizer of f over K. Before presenting our algorithm let us note that for the case when the set
Σ is finite, Cortes et al. (2010) show that maximizing f over the convex combination of the
base kernels (κσ )σ∈Σ can be formulated as a quadratic optimization problem with |Σ | vari-
ables. When Σ is infinite, the optimization problem would have infinitely many variables,
hence one needs to follow a different approach in this case.

To find an approximate maximizer of f , we propose a steepest ascent approach to for-
ward stagewise additive modeling (FSAM). FSAM (Hastie et al. 2001) is an iterative method
for optimizing an objective function by sequentially adding new basis functions without
changing the parameters and coefficients of the previously added basis functions. In the
steepest ascent approach, in iteration t , we search for the base kernel in (κσ ) defining the
direction in which the growth rate of f is the largest, locally in a small neighborhood of the
previous candidate kt−1:

σ ∗
t = arg max

σ∈Σ

lim
ε→0

f (kt−1 + ε κσ ) − f (kt−1)

ε
. (1)

Once σ ∗
t is found, the algorithm finds the coefficient 0 ≤ ηt ≤ ηmax

3 such that f (kt−1 +
ηtκσ∗

t
) is maximized and the candidate is updated using

kt = kt−1 + ηtκσ∗
t
.

The process stops when the objective function f ceases to increase by an amount larger
than θ > 0, or when the number of iterations becomes larger then a predetermined limit T ,
whichever happens earlier.

Proposition 1 The value of σ ∗
t can be obtained by

σ ∗
t = arg max

σ∈Σ

〈
K(κσ ),F ′( (

K
(
kt−1

))
c

) 〉
F

, (2)

3In the experiments, we use the arbitrary value ηmax = 1. Note that the value of ηmax, together with the limit
T acts as a regularizer. However, in our experiments, the procedure always stops before the limit T on the
number of iterations is reached.
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Algorithm 1 Forward stagewise additive modeling for kernel learning with a continuously
parametrized set of kernels. For the definitions of f , F , F ′ and K : K → R

n×n, see the text
1: Inputs: data D, kernel initialization parameter ε, the number of iterations T , tolerance

θ , maximum stepsize ηmax > 0.
2: K0 ← εIn.
3: for t = 1 to T do
4: P ← F ′(Kt−1)

5: P ← Cn P Cn

6: σ ∗ = arg maxσ∈Σ 〈P,K(κσ )〉F
7: K ′ = Cn K(κσ∗)Cn

8: η∗ = arg max0≤η≤ηmax
F(Kt−1 + ηK ′)

9: Kt ← Kt−1 + η∗K ′
10: if F(Kt) ≤ F(Kt−1) + θ then terminate
11: end for

where for a kernel matrix K ,

F ′(K) = K̂∗
c − ‖K‖−2

F 〈K,K̂∗
c 〉F K

‖K‖F ‖K̂∗
c ‖F

. (3)

The proof can be found in Sect. A.1. The crux of the proposition is that the directional
derivative in (1) can be calculated and gives the expression maximized in (2).

In general, the optimization problem (2) is not convex and the cost of obtaining a (good
approximate) solution is hard to predict. Evidence that, at least in some cases, the function to
be optimized is not ill-behaved is presented in Sect. B.1. In our experiments, an approximate
solution to (2) is found using numerical methods.4 As is usual in forward stagewise additive
modeling, finding the global optimizer in (2) might not be necessary for achieving good
statistical performance. Our experiments seem to confirm that this is the case.

In multi-dimensional settings, i.e., when Σ is a subset of a multi-dimensional space,
we have experimentally noticed that our method can “overfit” the alignment (the evidence
for this is presented later in Sect. 3). To prevent this, we propose that instead of (2), the
regularized version of this optimization problem should be used:

σ ∗
t = arg min

σ∈Σ

−〈
K(κσ ),F ′( (

K
(
kt−1

))
c

) 〉
F

+ λReg(σ ). (4)

Here, λ > 0 is a regularization parameter and Reg is a regularization functional that assigns
higher numbers to more “complex” kernel parameters. In the experiments, we will use

Reg(σ ) = ‖σ − σ‖2
2,

where σ = 1/d
∑d

i=1 σi . This regularizer penalizes kernel parameter vectors with a large
“variance”. In particular, if λ → ∞ then the search space is effectively reduced to a one-
dimensional space.

4In particular, we use the fmincon function of Matlab, with the interior-point algorithm option. We also tried
the DC-programming method of Argyriou et al. (2006). The computational cost of DC-programming in-
creases exponentially fast in the number of parameters (Argyriou et al. 2006), which renders this method inef-
ficient for large number of parameters. Even for the one-dimensional parameter search, the DC-programming
method does not uniformly perform faster than the alternative method.
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Let us now turn to how ηt can be found. As it turns out, this parameter is easy to find. In
particular, the underlying optimization problem has a closed form solution:

Proposition 2 The value of ηt is given by ηt = arg maxη∈{0,η∗,ηmax} f (kt−1 + ηκσ∗
t
), where

η∗ = max(0, (ad − bc)/(bd − ae)) if bd − ae �= 0 and η∗ = 0 otherwise, a = 〈K,K̂∗
c 〉F ,

b = 〈K ′, K̂∗
c 〉F , c = 〈K,K〉F , d = 〈K,K ′〉F , e = 〈K ′,K ′〉F and K = (K(kt−1))c , K ′ =

(K(κσ∗
t
))c .

The pseudocode of the full algorithm is presented in Algorithm 1. The algorithm needs
the data, the number of iterations (T ) and a tolerance (θ ) parameter, in addition to a param-
eter ε used in the initialization phase and ηmax. The parameter ε is used in the initialization
step to avoid division by zero, and its value has little effect on the performance. Note that
the cost of computing a kernel-matrix, or the inner product of two such matrices is O(n2).
Therefore, the complexity of the algorithm is quadratic in the number of data points. The
actual cost will be strongly influenced by the computational cost of problem (2). In the
description of the experiments, we include actual training times that should give a rough
indication of the computational limits of the procedure.

As a final remark, note that it is straightforward to apply our algorithm to combine het-
erogeneous kernels too. In this case, to find the best kernel in each iteration, we first find
the best kernel (parameter) for each kernel type according the objective function in line 6 of
Algorithm 1. Once we determine the best kernel (parameter) for each kernel type, we iterate
through these best kernels and find the best kernel, again according to the same objective
function. In the next section, we evaluate our method in different problems and compare it
against other algorithms.

3 Experimental evaluation

In this section we compare our kernel learning method with several kernel learning meth-
ods on synthetic and real data; see Table 1 for the list of methods. Our method is labeled
CA for Continuous Alignment-based kernel learning. In all of the experiments, we use the
following values with CA: T = 50, ε = 10−10, and θ = 10−3. The first two methods, i.e.,
our algorithm, and CR (Argyriou et al. 2005), are able to pick kernel parameters from a
continuous set, while the rest of the algorithms work with a finite number of base kernels.
In all of the experiments in this paper, for all methods the classifiers were trained using the
soft margin SVM method, where the regularization coefficient of SVM was chosen from
10{−5,−4.5,...,4.5,5} using an independent validation set.

In Sect. 3.1 we use synthetic data to illustrate the potential advantage of methods that
work with a continuously parameterized set of kernels and the importance of combining
multiple kernels. We also illustrate in a toy example that multi-dimensional kernel parameter
search can improve performance. These are followed by the evaluation of the above listed
methods on several real datasets in Sect. 3.2.

3.1 Synthetic data

The purpose of these experiments is mainly to provide empirical proof for the following
hypotheses: (H1) The combination of multiple kernels can lead to improved performance as
compared to what can be achieved with a single kernel. (H2) The methods that search the
continuously parameterized families are able to find the “key” kernels and their combination.
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Table 1 List of the kernel
learning methods evaluated in the
experiments. The key to the
naming of the methods is as
follows: CA stands for
“continuous alignment”
maximization, CR stands for
“continuous risk” minimization,
DA stands for “discrete
alignment”, D1, D2, DU should
be obvious

Abbr. Method

CA Our new method

CR From Argyriou et al. (2005)

DA From Cortes et al. (2010)

D1 
1-norm MKL Kloft et al. (2011)

D2 
2-norm MKL Kloft et al. (2011)

DU Uniform weights over kernels

Fig. 1 Misclassification error as
a function of kernel frequency

(H3) Our method can even search multi-dimensional parameter spaces, which in some cases
is crucial for good performance.

To illustrate (H1) and (H2) we have designed the following problem: the inputs are gen-
erated from the uniform distribution over the interval [−10,10]. The label of each data point
is determined by the function y(x) = sign(f (x)), where f (x) = sin(

√
2x) + sin(

√
12x) +

sin(
√

60x). Training and validation sets include 500 data points each, while the test set
includes 1000 instances. Figure 2(a) shows the functions f (curve) and y (dots). For this ex-
periment we use Dirichlet kernels of degree one, parameterized with a frequency parameter
σ : κσ (x, x ′) = 1 + 2 cos(σ‖x − x ′‖).

In order to investigate (H1), we searched through the kernel frequencies in the range
[0,20]. We selected 1000 kernel frequencies by discretizing this range. We then train a
SVM with each kernel. The training and validation sets consist of 1000 data points each,
while the test set consists of 2000 points. We plot the test error obtained by each kernel in
Fig. 1. Notice that the kernel frequencies used to generate data, i.e. {√2,

√
12,

√
60} obtain

lowest error values. Hence, they are good choices.
Next, we trained SVM classifiers with pair of frequencies, i.e. {√2,

√
12}, {√2,

√
60},

and {√12,
√

60}. They achieved error rates of 16.4 %, 20.0 %, and 21.3 %, respectively (the
kernels were combined using uniform weights). Finally, a classifier that was trained with all
three frequencies achieved an error rate of 2.3 %.

Let us now turn to (H2). As shown in Fig. 2(b), the CA and CR methods both achieved
a misclassification error close to what was seen when the three best frequencies were used,
showing that they are indeed effective. Furthermore, Fig. 2(c) shows that the discovered fre-
quencies are close to the frequencies used to generate the data. For the sake of illustration, we
also tested the methods which require the discretization of the parameter space. We choose
10 Dirichlet kernels with σ ∈ {0,1, . . . ,9}, covering the range of frequencies defining f . As
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Fig. 2 (a) The function
f (x) = sin(

√
2x) + sin(

√
12x) +

sin(
√

60x) used for generating
synthetic data, along with
sign(f ). (b) Misclassification
percentages obtained by each
algorithm. (c) The kernel
frequencies found by the CA
method

can be seen from Fig. 2(b) in this example the chosen discretization accuracy is insufficient.
Although it would be easy to increase the discretization accuracy to improve the results of
these methods,5 the point is that if a high resolution is needed in a one-dimensional prob-
lem, then these methods are likely to face serious difficulties in problems when the space of
kernels is more complex (e.g., the parameterization is multi-dimensional). Nevertheless, we
are not suggesting that the methods which require discretization are universally inferior, but
merely pointing out that an “appropriate discrete kernel set” might not always be available.

To illustrate (H3) we designed a second set of problems: The instances for the positive
(negative) class are generated from a d = 50-dimensional Gaussian distribution with covari-
ance matrix C = Id×d and mean μ1 = ρ θ

‖θ‖ (respectively, μ2 = −μ1 for the negative class).

Here ρ = 1.75. The vector θ ∈ [0,1]d determines the relevance of each feature in the clas-
sification task, e.g. θi = 0 implies that the distributions of the two classes have zero means
in the i-th feature, which renders this feature irrelevant. The value of each component of
vector θ is calculated as θi = (i/d)γ , where γ is a constant that determines the relative im-
portance of the elements of θ . We generate seven datasets with γ ∈ {0,1,2,5,10,20,40}.
For each value of γ , the training set consists of 50 data points (the prior distribution for the
two classes is uniform). The test error values are measured on a test set with 2000 instances.
We repeated each experiment 10 times and report the average misclassification error and
alignment measured over the test set along with the training time.

In this experiment we test two versions of our method: one that uses a family of Gaussian
kernels with a common bandwidth (denoted by CA-1D), and another one (denoted by CA-
nD) that searches in the space (κσ )σ∈(0,∞)50 , where each coordinate has a separate bandwidth
parameter,

κσ

(
x, x ′) = exp

(
−

d∑
i=1

(xi − x ′
i )

2

σ 2
i

)
.

5Further experimentation found that a discretization below 0.1 is necessary in this example.
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Fig. 3 Misclassification error and training time of various methods in a 50-dimensional synthetic problem
as a function of the relevance parameter γ . Note that the number of irrelevant features increases with γ . For
details of the experiments, see the text

Since the training set is small,6 one can easily overfit while optimizing the alignment. Hence,
we will use the regularized version of the algorithm (cf. Eq. (4)) with Reg(σ ) = ‖σ − σ‖2

2,
where σ = 1/d

∑d

i=1 σi . As discussed beforehand, this regularizer causes the values of the
bandwidth parameters to shrink toward their common average value.

For the sake of completeness, we also include the unregularized version of CA-nD in
which λ = 0. It is labeled CA-nD(No Reg) in plots. The method of Argyriou et al. (2005) has
also been run with single- and multi-dimensional parameter search procedures (CR-1D and
CR-nD respectively). We also include results obtained for finite kernel learning methods.
For these methods, we generate 50 Gaussian kernels with bandwidths σ ∈ mg{0,...,49}, where
m = 10−3, and g ≈ 1.33. Hence, the bandwidth range constitutes a geometric sequence from
10−3 to 103. Further details of the experimental setup can be found in Sect. B.2.

Figure 3 shows the results. Recall that the larger the value of γ , the larger is the number of
nearly irrelevant features. Since methods which search only a one-dimensional space cannot
differentiate between relevant and irrelevant features, their misclassification rate increases
with γ . On the other hand multi-dimensional search methods are able to cope with this
situation and even improve the performance. We observe that without regularization, though,
for small values of γ , CA-nD(No Reg) and CR-nD drastically overfit. We also show the
training time of the methods. Note that CR-1D is slower than CA-1D.7 The same trend
can be observed in their multi-dimensional counterparts, i.e. CA-nD(No Reg) and CR-nD.
However the training time of CA-nD is comparable (in this experiment) to that of CR-nD
since CA-nD runs cross-validation to tune λ too. Although the large training time of multi-

6We keep the size of training set small in this experiment to emphasize the importance of regularization when
one deals with high-dimensional kernel parameters.
7Obviously, reported training times are implementation-dependent and the comparisons should be taken with
a grain of salt. We implemented CA and CR methods using Matlab’s fmincon function. Finite kernel learning
algorithms can either be found or implemented using the SHOGUN machine learning toolbox available at
http://www.shogun-toolbox.org/.

http://www.shogun-toolbox.org/
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Fig. 4 Scalability of various methods with respect to the number of training examples (top) and the number
of kernels (bottom). Results for the methods that search over a continuous range are included for comparison
purposes in the bottom figures. Note that the curves of these methods are flat as they in fact do not rely on the
provided finite kernel sets

dimensional search methods might be prohibitive, for some problems, these methods might
be the only option if good performance is crucial.

3.1.1 Scalability test

The previous experiment does not answer the question of how the methods running time
and performance scale with either the number of training examples or (in the case of fi-
nite kernel learning methods) the number of kernels. Therefore, in this section we report
results for experiments where these properties of the learning methods are studied. To test
the methods we choose the previous synthetic dataset with γ = 40 and increase the number
of training examples and the number of kernels. As with the previous experiment we report
misclassification errors and training times.

In the first experiment we examine the methods when they are provided with different
number of training examples between 50 and 1600. Figure 4 (top) shows the results. While
the performance of the methods becomes similar as we increase the size of training set, for
small training sets CA-1D and DA have the lowest misclassification error among methods
that consider one-dimensional kernel parameters. In terms of training time, CA-1D is the
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fastest method overall. Its training time is almost comparable to that of DU, which performs
no kernel learning. The misclassification error rate of the multi-dimensional methods is the
best which is unsurprising given that at γ = 40 only a few variables are expected to play a
significant role. In terms of their training time, CA-nD(No Reg) and CA-nD perform better
than CR-nD. In particular, CA-nD(No Reg) is almost 10 times faster than its counterpart,
CR-nD.

In the second experiment, we again use the 50-dimensional synthetic dataset with γ = 40
and study how the finite kernel learning methods scale as the number of kernels is increased.
We provide 50 training examples to all methods to be able to make the differences between
the methods easier to demonstrate. Admittedly, with these choices, we create a learning
problem that is difficult to handle with the discretization approach. In particular, if one uses
only 2 different values for each dimension, we already get 250 ≈ 1015 kernels, which is at
present out of reach even for the best finite kernel learning algorithms. What one may still
try is to clump all parameters together and thus reduce the dimensionality of the parameter
space to one. The difficulty then is that at γ = 40 many dimensions are irrelevant, which
means that even the best isotropic kernel is expected to improve moderately only.

To test this hypothesis, we choose r Gaussian kernels where r is one of 50, 100, 200,
500, 1000 or 2000. The parameters of the kernels are chosen from the interval [10−3,103]
in a geometric fashion. We provide these kernels to the finite kernel learning methods and
measure misclassification error and training time. The results are shown in the bottom part
of Fig. 4. As can be seen, the performance of the finite kernel learning methods does not
improve when the number of kernels increases: the kernels added in a blind fashion are not
helpful in predicting the response. Further, as expected, their training time increases with
the number of kernels. The computational complexity of D1 and D2 depends linearly on
the number of kernels. The optimization problem underlying DA is an instance of quadratic
programming (Cortes et al. 2010), which typically is solved in cubic time using interior-
point methods (Boyd and Vandenberghe 2004). The DU method does not perform any kernel
learning. Yet, its computation time is increased due to the extra load of computing kernel
matrices.

The attentive reader might have noticed that the performance of method D1 (the 
1-norm
MKL method of Kloft et al. 2011) in Fig. 4 gets worse as the number of kernels is increased.
Note that the experiment in this case are set up in such a way that the additional kernels
are not helpful in predicting the response – the features corresponding to the additional
kernels can be considered as “noise”. Should not properly executed regularization prevent
the “overfitting effect” seen on this figure? To understand why this is not the case notice
that when some “noisy” features are added, the learning algorithm will reduce the training
error by assigning non-zero weights to these noisy features. However, then the validation
error increases. Thus, cross-validation will prefer to choose a larger value of the regular-
ization coefficient. However, a larger regularization coefficient will also shrink the weights
assigned to the “important” features. As a result, even with the optimal choice of the regu-
larization coefficient, the predictor is performing worse than when the noise features were
not introduced, which is in fact well in line with the theory available for 
1-regularization.8

3.2 Real data

We evaluate the methods listed in Table 1 on several binary classification tasks from MNIST
and the UCI Letter recognition dataset, along with several other datasets from the UCI

8Under some technical conditions, theory predicts that the performance degradation is proportional to the
logarithm of the number of features (e.g., Bühlmann and van de Geer 2011).
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Fig. 5 Misclassification percentages in different tasks of the MNIST dataset

machine learning repository (Frank and Asuncion 2010) and Delve datasets (see, http://
www.cs.toronto.edu/~delve/data/datasets.html). In all experiments the results are averaged
over 10 runs.

MNIST In the first experiment, following Argyriou et al. (2005), we choose 8 hand-
written digit recognition tasks of various difficulty from the MNIST dataset (LeCun and
Cortes 2010). This dataset consists of 28 × 28 images with pixel values ranging between
0 and 255. In these experiments, we used Gaussian kernels with parameter σ : Gσ (x, x ′) =
exp(−‖x − x ′‖2/σ 2). Due to the large number of attributes (784) in the MNIST dataset, we
do not evaluate multi-dimensional versions of CA and CR (they are evaluated on a similar
dataset, of smaller scale, see below). For the algorithms that work with a finite kernel set,
we pick 20 kernels with the value of σ picked from an equidistant discretization of the in-
terval [500,50000]. In each experiment, the training and validation sets consist of 500 and
1000 data points, while the test set has 2000 data points. The test-set error plots for all of
the problems are shown in Fig. 5. In order to give an overall impression of the algorithms’
performance, we ranked them based on the results obtained in the above experiment. Table 2
reports the median ranks of the methods for the experiment just described.

Overall, methods that choose σ from a continuous set outperformed their finite counter-
parts. This suggests again that for the finite kernel learning methods the range of σ and the
discretization of this range is important to the accuracy of the resulting classifier.

UCI letter recognition In another experiment, we evaluated these methods on 12 binary
classification tasks from the UCI Letter recognition dataset. This dataset includes 20000
data points, each with 16 features, of the 26 capital letters in the English alphabet. For each
binary classification task, the training and validation sets include 300 and 200 data points,
respectively. The misclassification error is measured over 1000 test points. As with MNIST,
we used Gaussian kernels. However, in this experiment, we ran both the one- and multi-
dimensional search versions of CA and CR. The rest of the methods learn a single parameter
and the finite kernel learning methods were provided with 20 kernels with σ ’s chosen from
the interval [1,200] in an equidistant manner. The number of kernels for these methods is
chosen to make their training time comparable to that of CA-1D. The plots of misclassi-
fication error are shown in Fig. 6. We report the median rank of each method in Table 2.

http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html
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Table 2 Median rank and
training time (seconds) of various
kernel learning methods
evaluated in experiments

Rank Time

MNIST Letter Misc. data MNIST Letter

CA-1D 1 1 3 12 ± 1 9±1

CA-nD N/A 5.5 2 N/A 770±80

CR-1D 2 2 3 377 ± 56 590±21

CR-nD N/A 3 5 N/A 1550±200

DA 4.5 4.5 3 31 ± 1 11±1

D1 4.5 8 4 57 ± 6 21±1

D2 5 7 7 58 ± 3 22±1

DU 4 6 7 10 ± 1 5±1

Fig. 6 Misclassification percentages in different tasks of the UCI Letter recognition dataset

While the one-dimensional version of our method outperforms the rest of the methods, the
classifier built on the kernel found by the multi-dimensional version of our method did not
perform well. We examined the value of alignment between the learned kernel and the target
label kernel on the test set achieved by each method. The results are shown in Fig. 7. The
multi-dimensional version of our method achieved the highest value of alignment in every
task in this experiment. This experiment demonstrates that high alignment values between
the learned kernel and the ideal kernel do not necessarily translate into a more accurate clas-
sifier. Aside from this observation, the same trend observed in the MNIST data can be seen
here. The continuous kernel learning methods outperform the finite kernel learning methods.

Miscellaneous datasets In the last experiment we evaluate all methods on 11 datasets cho-
sen from the UCI machine learning repository and Delve datasets. Most of these datasets



Mach Learn (2013) 91:305–324 319

Fig. 7 Alignment values in different tasks of the UCI Letter recognition dataset

Table 3 Datasets used in the experiments

Dataset # features # instances Train size Valid. size Test size

Banana 2 5300 500 1000 2000

Breast Cancer 9 263 52 78 133

Diabetes 8 768 153 230 385

German 20 1000 200 300 500

Heart 13 270 54 81 135

Image Seg. 18 2086 400 600 1000

Ringnorm 20 7400 500 1000 2000

Sonar 60 208 41 62 105

Splice 60 2991 500 1000 1491

Thyroid 5 215 43 64 108

Waveform 21 5000 500 1000 2000

were used previously to evaluate kernel learning algorithms (see, e.g. Lanckriet et al. 2004;
Cortes et al. 2009a, 2009b, 2010; Rakotomamonjy et al. 2008). The specification of these
datasets are shown in Table 3. The performance of each method is shown in Fig. 8. The
median rank of each method is shown in Table 2. Contrary to the Letter experiment, in this
case the multi-dimensional version of our method outperforms the rest of the methods.

Training times We measured the time required for each run and each kernel learning
method in the MNIST and the UCI Letter experiments. In each case we took the average
of the training time of each method over all tasks. The average required time along with
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Fig. 8 Misclassification percentages obtained in 11 datasets

the standard error values are shown in Table 2. Among all methods, the DU method is
fastest, which is expected, as it requires no additional time to compute kernel weights. The
CA-1D is the fastest among the rest of the methods. In these experiments our method con-
verges in less than 10 iterations (kernels). The general trend is that one-stage kernel learning
methods, i.e., D1, D2, and CR, are slower than two-stage methods, CA and DA. In these
experiments CR is slower than its counterpart, CA, since it usually requires more iterations
(around 50) to converge. The multi-dimensional search methods (CA-nD and CR-nD) are
significantly slower than their one-dimensional counterparts. The explanation of this is that
these methods introduce an additional regularization parameter that needs to be tuned based
on cross-validation.

4 Conclusion and future work

We presented a novel method for kernel learning. This method addresses the problem of
learning a kernel in the positive linear span of some continuously parameterized kernel
family. The algorithm implements a steepest ascent approach to forward stagewise addi-
tive modeling to maximize an empirical centered correlation measure between the kernel
and the empirical approximation to the ideal response-kernel. The method was shown to
perform well in a series of experiments, both with synthetic and real data. We showed that
in one-dimensional kernel parameter search, our method outperforms standard multiple ker-
nel learning methods without the need to discretizing the parameter space. While the method
of Argyriou et al. (2005) also benefits from searching in a continuous space, it was seen to
require significantly more training time compared to our method. We also showed that our
method can successfully deal with high-dimensional kernel parameter spaces.
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The main lesson of our experiments is that the methods that start by discretizing the
kernel space without using the data might lose the potential to achieve good performance
before any learning happens.

A secondary outcome of our experiments is the observation that although test-set align-
ment is generally a good indicator of good predictive performance, a larger test-set align-
ment does not necessarily transform into a smaller misclassification error. Although this
is not completely unexpected, we think that it will be important to thoroughly explore the
implications of this observation.

We think that currently our method is perhaps the most efficient method to design data-
dependent dictionaries that provide competitive performance. However, for now this remains
an empirical observation. Thus, it remains an interesting problem to find methods that en-
joy strong bounds on both of their performance and computational costs. Another important
question is to scale up the method to work with large datasets. The current algorithm scales
quadratically with the number of kernels because of the need to compute the data Gram-
mian. However, for large datasets, it might be sufficient to compute an approximation of the
Grammian, e.g., by subsampling the data. Determining the best approach to subsampling
however is left for future work.
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Appendix A: Proofs

A.1 Proof of Proposition 1

First, notice that the limit in (1) is a directional derivative, Dκσ f (kt−1). By the chain rule,

Dκσ f
(
kt−1

) = 〈
K(κσ ), F ′

c

(
K

(
kt−1

)) 〉
F

,

where, for convenience, we defined Fc(K) = Ac(K, K̂∗). Define

F(K) = 〈
K,K̂∗

c

〉
F
/
(‖K‖F

∥∥K̂∗
c

∥∥
F

)
so that Fc(K) = F(Kc). Some calculations give that

F ′(K) = K̂∗
c − ‖K‖−2

F 〈K,K̂∗
c 〉F K

‖K‖F ‖K̂∗
c ‖F

(which is the function defined in (3)). We claim that the following holds:

Lemma 1 F ′
c(K) = CnF

′(Kc)Cn.

Proof By the definition of derivatives, as H → 0,

F(K + H) − F(K) = 〈
F ′(K),H

〉
F

+ o
(‖H‖).

Also,

Fc(K + H) − Fc(K) = 〈
F ′

c(K),H
〉
F

+ o
(‖H‖).
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Now,

Fc(K + H) − Fc(K) = F(CnKCn + CnHCn) − F(CnKCn)

= 〈
F ′(Kc),CnHCn

〉
F

+ o
(‖H‖)

= 〈
CnF

′(Kc)Cn,H
〉
F

+ o
(‖H‖),

where the last property follows from the cyclic property of trace. Therefore, by the unique-
ness of derivative, F ′

c(K) = CnF
′(Kc)Cn. �

Now, notice that CnF
′(Kc)Cn = F ′(Kc). Thus, we see that the value of σ ∗

t can be ob-
tained by

σ ∗
t = arg max

σ∈Σ

〈
K(κσ ),F ′( (

K
(
kt−1

))
c

) 〉
F

,

which was the statement to be proved.

A.2 Proof of Proposition 2

Let g(η) = f (kt−1 +ηκσ∗
t
). Using the definition of f , we find that with some constant ρ > 0,

g(η) = ρ
a + bη

(c + 2dη + eη2)1/2
.

Notice that here the denominator is bounded away from zero (this follows from the form of
the denominator of f ). In particular, e > 0. Further,

lim
η→∞g(η) = − lim

η→−∞ g(η) = ρ
b√
e
. (5)

Taking the derivative of g we find that

g′(η) = ρ
bc − ad + (bd − ae)η

(c + 2dη + eη2)3/2
.

Therefore, g′ has at most one root and g has at most one global extremum, from which the
result follows by solving for the root of g′ (if g′ does not have a root, g is constant).

Appendix B: Details of the numerical experiments

In this section we provide further details and data for the experimental results.

B.1 Non-convexity issue

As we mentioned in Sect. 2, our algorithm may need to solve a non-convex optimization
problem in each iteration to find the best kernel parameter. Here, we explore this problem
numerically, by plotting the function to be optimized in the case of a Gaussian kernel with
a single bandwidth parameter. In particular, we plotted the objective function of Eq. (2)
with its sign flipped, therefore we are interested in the local minima of function h(σ) =
−〈K(κσ ),F ′( (K(kt−1))c) 〉F , see Fig. 9. The function h is shown for some iterations of
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Fig. 9 The flipped objective function underlying (2) as a function of σ , the parameter of a Gaussian kernel
in selected MNIST and UCI Letter problems. Our algorithm needs to find the minimum of these functions
(and similar ones)

some of the tasks from both the MNIST and the UCI Letter experiments. The number inside
parentheses in the caption specifies the corresponding iteration of the algorithm. On these
plots, the objective function does not have more than 2 local minima. Although in some
cases the functions have some steep parts (at the scales shown), their optimization does not
seem very difficult.

B.2 Implementation details

The one-dimensional version of our algorithm, CA-1D, and the CR-1D method, employ
Matlab’s fmincon function with multiple restarts from the set 10{−3,...,5}, to choose the kernel
parameters. The multi-dimensional versions, i.e. CA-nD and CR-nD, use fmincon only once,
since in this particular example the search method runs on a multi-dimensional search space,
which makes the search an expensive operation. The starting point of multi-dimensional
search methods is a vector of equal elements where this element is the weighted average of
the kernel parameters found by the corresponding one-dimensional search method, weighted
by the coefficient of the corresponding kernels.

We tuned the value of the regularization parameter in Eq. (4) from 10{−5,...,14} using an
independent validation set (the best value of λ is the one that achieves the highest value
of alignment on the validation set). We decided to use a large validation set, following es-
sentially the practice of Kloft et al. (2011, Sect. 6.1) to make sure that in the experiments
reasonably good regularization parameters are used, i.e., to factor out the choice of the reg-
ularization parameters. This might bias our results towards CA-nD, as compared to CA-1D,
though similar results were achieved with a smaller validation set of size 200. As a final
detail note that D1, D2 and CR also use the validation set for choosing the value of their
regularization factor, and together with the regularizer, the weights also. Hence, their results
might also be positively biased (though we do not think this is significant, in this case).

The training times reported in the paper correspond to a single run of learning kernel
weights and learning a classifier. The extra time required to tune SVM regularization pa-
rameter is not included. However, for the CA-nD method the time required to tune the reg-
ularization parameter λ has been taken into account.
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Fig. 10 Alignment values in the
50-dimensional synthetic dataset
experiment

Figure 10 shows the (centered) alignment values for the learned kernels (on the test data)
as a function of the relevance parameter γ . It can be readily seen that the multi-dimensional
methods have an edge over other methods when the number of irrelevant features is large,
in terms of kernel alignment. As seen in Fig. 3, this edge is also transformed into an edge
in terms of test-set performance. Note also that the discretization is fine enough so that the
alignment maximizing finite kernel learning method DA can achieve the same alignment as
the method CA-1D.
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