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Abstract. Automated image interpretation is an important task in nu-
merous applications ranging from security systems to natural resource
inventorization based on remote-sensing. Recently, a second generation
of adaptive machine-learned image interpretation systems have shown
expert-level performance in several challenging domains. While demon-
strating an unprecedented improvement over hand-engineered and first
generation machine-learned systems in terms of cross-domain portability,
design-cycle time, and robustness, such systems are still severely limited.
This paper inspects the anatomy of the state-of-the-art Multi resolution
Adaptive Object Recognition framework (MR ADORE) and presents ex-
tensions that aim at removing the last vestiges of human intervention still
present in the original design of ADORE. More specifically, feature selec-
tion is still a task performed by human domain experts and represents a
major stumbling block in the creation process of fully autonomous image
interpretation systems. This paper focuses on minimizing such need for
human engineering. After discussing experimental results, showing the
performance of the framework extensions in the domain of forestry, the
paper concludes by outlining autonomous feature extraction methods
that may completely remove the need for human expertise in the feature
selection process.

Keywords: Computer Vision, Machine learning, Reinforcement learn-
ing.

1 Introduction & Related Research

Image interpretation is an important and highly challenging problem with nu-
merous practical applications. Unfortunately, hand engineering an image inter-
pretation system requires a long and expensive design cycle as well as subject
matter and computer vision expertise. Furthermore, hand-engineered systems
are difficult to maintain, port to other domains, and tend to perform adequately
only within a narrow range of operating conditions atypical of real world sce-
narios. In response to the aforementioned problems, various automated ways of
constructing image interpretation systems have been explored in the last three
decades [10].



Based on the notion of “goal-directed vision” [9], a promising approach for
autonomous system creation lies with treating computer vision as a control prob-
lem over a space of image processing operators. Initial systems, such as the
Schema System[9], had control policies consisting of ad-hoc, hand-engineered
rules. While presenting a systemic way of designing image interpretation sys-
tems, the approach still required a large degree of human intervention. In the
1990’s the second generation of control policy-based-image interpretation sys-
tems came into existence. More than a systematic design methodology, such sys-
tems used theoretically well-founded machine learning frameworks for automatic
acquisition of control strategies over a space of image processing operators. The
two well-known pioneering examples are a Bayes net system [15] and a Markov
decision process (MDP) based system [8].

Our research efforts have focused on automating the latter system, called
ADaptive Object REcognition system (ADORE), which learned dynamic im-
age interpretation strategies for finding buildings in aerial images [8]. As with
many vision systems, it identified objects (in this case buildings) in a multi-step
process. Raw images were the initial input data, while image regions containing
identified buildings constituted the final output data; in between the data could
be represented as intensity images, probability images, edges, lines, or curves.
ADORE modelled image interpretation as a Markov decision process, where the
intermediate representations were continuous state spaces, and the vision proce-
dures were actions. The goal was to learn a dynamic control policy that selects
the next action (i.e., image processing operator) at each step so as to maximize
the quality of the final image interpretation.

As a pioneering system, ADORE proved that a machine learned control policy
was much more adaptive that its hand-engineered counterparts by outperforming
any hand-crafted sequence of operators within its library. In addition, the sys-
tem was effortlessly ported to recognize stationary (staplers, white-out, etc.) in
office scenes and again was shown to outperform operator sequences designed by
human domain experts [7]. However, the framework of ADORE was still limited
in a number of ways and left several directions for future work and improve-
ment. This paper discusses perhaps the biggest stumbling block to realization
of autonomous image interpretation systems, namely, the need for hand-crafted
features. The project that investigates approaches to fully autonomous object
recognition systems is named MR ADORE for Multi-Resolution ADaptive Ob-
ject REcognition [3].

The rest of the paper is organized as follows. First, we review the requirements
and design of MR ADORE, in order to demonstrate the critical assumptions
made and the resulting difficulties. We then present framework extensions that
minimize the need for hand-crafted features and present experimental results of
applying the upgraded system to the domain of forestry. The paper concludes
with future research directions on how to completely replace domain experts
with automated feature selection methods.



Fig. 1. Artificial tree plantations result in simple forest images. Shown on the left is an
original photograph. The right image is the desired labeling provided by an expert as part
of the training set.

2 MR ADORE Design Objectives

MR ADORE was designed with the following objectives as its target: (i) rapid
system development for a wide class of image interpretation domains; (ii) low
demands on subject matter, computer vision, and AI expertise on the part of
the developers; (iii) accelerated domain portability, system upgrades, and main-
tenance; (iv) adaptive image interpretation wherein the system adjusts its oper-
ation dynamically to a given image; and (v) user-controlled trade-offs between
recognition accuracy and utilized resources (e.g., run-time).

These objectives favor the use of readily available off-the-shelf image pro-
cessing operator libraries (IPLs). However, the domain independence of such
libraries requires an intelligent policy to control the application of library oper-
ators. Operation of such control policy is a complex and adaptive process. It is
complex in that there is rarely a one-step mapping from input images to final
interpretation; instead, a series of operator applications are required to bridge
the gap between raw pixels and semantic objects. Examples of the operators
include region segmentation, texture filters, and the construction of 3D depth
maps. Figure 2 presents a partial IPL operator dependency graph for the forestry
domain. Image interpretation is an adaptive process in the sense that there is
no fixed sequence of actions that will work well for most images. For instance,
the steps required to locate and identify isolated trees are different from the
steps required to find connected stands of trees. The success of adaptive image
interpretation systems therefore depends on the solution to the control problem:
for a given image, what sequence of operator applications will most effectively
and reliably interpret the image?

3 MR ADORE Operation

MR ADORE starts with a Markov decision process (MDP) [16] as the basic
mathematical model by casting the IPL operators as MDP actions and the re-
sults of their applications (i.e., data tokens) as MDP states. However, in the
context of image interpretation, the formulation frequently leads to the following
challenges absent from typical search settings and standard MDP formulations:
(i) Standard machine learning algorithms cannot learn from raw pixel level data
since the individual states are on the order of several mega-bytes each. Selecting
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Fig. 2. Partial operator graph for the domain of forest image interpretation. The nodes
and the corresponding example images depict that data processing layers, which in turn
describe the type of MDP states present with MR ADORE. The edges represent vision
routines, typically ported from the Intel OpenCV and IPL libraries, that transform one
state to another (i.e., the MDP actions).

optimal features as state descriptions for sequential decision-making is a known
challenge in itself; (ii) The number of allowed starting states (i.e., the initial
high-resolution images) alone is effectively unlimited for practical purposes. Ad-
ditionally, certain intermediate states (e.g., probability maps) have a continuous
nature; (iii) In addition to the relatively high branching factor possible, due
to large image processing operator libraries, some of the more complex opera-
tors may require hours of computation time each; (iv) Unlike standard search,
typically used to find the shortest sequence leading to a goal state, the goal
of MR ADORE is to find/produce the best image interpretation. In that re-
spect the system solves an optimization problem rather than one of heuristic
search. Therefore, since goal states are not easily recognizable as the target im-
age interpretation is usually not known a priori, standard search techniques (eg
IDA* [14]) are inapplicable.

In response to these challenges MR ADORE employs the following off-line
and on-line machine learning techniques. First, the domain expertise is encoded
in the form of training data. Each training datum consists of 2 images, the input
image, and its user-annotated counterpart allowing the output of the system to
be compared to the desired image labeling (typically called ground-truth). Fig-
ure 1 demonstrates a training pair for the forestry image interpretation domain.
Second, during the off-line stage the state space is explored via limited depth
expansions of all training image pairs. Within a single expansion all sequences
of IPL operators up to a certain user-controlled length are applied to a training
image. Since training images are user-annotated with the desired output, ter-



minal rewards can be computed based on the difference between the produced
labeling and the desired labeling. System rewards are thus defined by creating
a scoring metric that evaluates the quality of the final image interpretation with
respect to the desired (used-provided) interpretation?. Then, dynamic program-
ming methods [2] are used to compute the value function for the explored parts
of the state space. We represent the value function as Q : S × A → R where
S is the set of states and A is the set of actions (operators). The true Q(s, a)
computes the maximum cumulative reward the policy can expect to collect by
taking action a in state s and acting optimally thereafter. (See Figure 3 for an
illustration of the process)

Features (f), used as observations by the on-line system component, repre-
sent relevant attributes extracted from the unmanageably large states (i.e., data
tokens). Features make supervised machine learning methods practically feasi-
ble, which in-turn are needed to extrapolate the sampled Q-values (computed
by dynamic programming on the explored fraction of the state space) onto the
entire space (see Figure 4).

Fig. 3. Off-line operation.

Finally, when presented with a novel input image, MR ADORE exploits the
machine-learned heuristic value function Q(f(s), a) over the abstracted state
? For all experiments presented, the intersection over union scoring metric, A∩B

A∪B
is

used. Typically used in vision research, this pixel-based scoring metric computes
the overlap between the set of hypothesis pixels produced by the system A and the
set of pixels within the ground-truth image B. If set A and B are identical then
their intersection is equal to their union and the score/reward is 1. As the two sets
become more and more disjoint the reward decreases, indicating that the produced
hypothesis corresponds poorly to the ground-truth.
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Fig. 4. Feature Extraction and Q-function approximation.

space, f(S), in order to intelligently select operators from the IPL. The pro-
cess terminates when the policy executes the action Submit(〈labeling〉), which
becomes the final output of the system. (see Figure 5).

Fig. 5. On-line operation.

3.1 Learning Control Policies

The purpose of the off-line learning phase within MR ADORE is to automat-
ically construct the on-line control policy. The policies studied to date can be
conceptually represented via the following unifying framework.

First, data tokens (i.e., states) can be split into disjoint “processing levels”.
The initial input image is a data token of the top (first) data level and the
final submitted image interpretation is a data token from the bottom (last)
data level. Figure 2 illustrates six processing levels as follows: raw image, color
image, gray image, probability map image, segmented image, and final image.



Consequently, the set S of data tokens can be partitioned into subsets S1, . . . , Sn

where Si contains data tokens belonging to processing level i. Likewise, the set
A of operators can be represented as a union of (disjoint) operator subsets Ai,
where action ai ∈ Ai is applicable at level i.

Therefore, any control policy π : S → A can be conceptually divided into n
control policies: π1, . . . , πn where πi operates over Si only, that is πi : Si → 2Ai .
There are several different classes of πi policies possible, including:

fixed: πi(s) = {ai} for all states s. Such policies blindly apply the same action
regardless of the data token s at hand.

full expansion: πi(s) = Ai: all applicable operators within the set Ai are exe-
cuted.

value-based: πi(s) = {arg maxa∈Ai Qi(s, a)} where a machine-learned approx-
imator is used for the Qi-function. Such policies greedily select actions to be
executed with the highest Q-values. This policy is specified by the machine-
learned approximator and the feature selection function.

In addition to the three aforementioned types of processing level policies, two
special policy types are possible within MR ADORE that do not conform to the
standard policy definition presented above.

path-selector: πi(s) = ai ∈ Ai, a
i+1 ∈ Ai+1, . . . , a

j ∈ Aj : This policy selects
a (sub)sequence of actions, the first of which is executed and the rest are
passed on to the next processing level(s). This policy is really a derivative of
the value-based policy in the sense that it too is a Q-greedy policy defined by
a machine-learned function approximator and the feature selection function.
The most notable difference is unlike the value-based policy, the path-selector
selects a (sub)sequence of actions to execute rather than a (sub)set of actions.

follow-through: This policy πj(s) executes action aj specified by a path-selector
policy at a higher processing level, πi, where 1 ≤ i < j.

Although these two policies significantly differ from the three initial polices,
all five policy types can be mixed and matched to form the global policy π.
(One obvious exception is that a follow-through policy must be proceeded by a
path-selection policy at a higher level.)
Thus, any policy π can be described as an n-ary vector of πi, where n is the
number of processing layers. Selecting the optimal combination of πi’s type and
parameters is a difficult problem. Pre-ADORE systems have solved this problem
by employing domain engineering techniques in order to design π, which virtu-
ally always calls for extensive trial-and-error experiments and substantial human
expertise. In [8] and [7] researchers used hand-crafted features to implement the
value-based policy at all data levels (commonly known as best-first/greedy pol-
icy) within ADORE. Research in the MR ADORE project casts policy selection
as a challenging open machine learning problem with the elements of meta-
learning. To that end, the following three types of control policies have been
explored to date.

A static policy, πstatic, uses a single sequence of operators and therefore
consists of only fixed πi’s. Research within the field of computer vision has



produced numerous systems using a static sequence of operators (e.g. [6]). As
previously mentioned such systems require extensive trial-and-error experiments,
domain expertise, etc. Since ADORE and MR ADORE perform a full-breadth
search during the off-line phase, the best static sequence can be automatically
determined from the off-line expansions of training images. Such policies, while
being computationally inexpensive (on-line), generally can only achieve near-
optimal performance within a narrow range of operating conditions (due to the
non-adaptive nature of the policy). In fact, this is the reason why researchers
initially turned to using a library of operators and adopted the “goal-directed”
paradigm for object recognition.

A “trunk-based” policy πtrunk makes its only decision at the top pro-
cessing level (S1) by selecting an n-long sequence of operators based on the
input image only. The policy maintains a library of optimal?? sequences (called
“trunks”) collected during the off-line stage. Therefore, π1 is a path-selector over
the space of trunks while π2, . . . , πn are all of the follow-through type.

While best-first policies are theoretically capable of much more flexibility
than static or (semi-static) trunk-based policies, they depend crucially on (i)
data token features for all levels and (ii) adequate amounts of training data to
train the Q-functions for all levels. Experience has shown that it is substantially
harder to select features at the earlier levels where the data tokens exhibit less
structure [10]. To make the problem worse, a single user-labeled training image
delivers exponentially larger numbers of 〈 state, action, reward 〉 tuples at later
processing levels. Unfortunately, the first processing level gets the mere |A1|
tuples per training image since there is only one data token (the input image
itself). As a net result, best-first control policies have been known to backtrack
frequently [8] as well as produce highly suboptimal interpretations [5], due to
poor decision making at the top processing layers. In fact the trunk-based policy
suffers from the same phenomenon, a lack of high-quality features and sparseness
of training examples.

Rather than making control decisions at every level based on the frequently
incomplete information provided by imperfect features, the least-commitment
policies postpone their decisions until more structured and refined data tokens
are derived. That is: πj = Aj for 1 ≤ j ≤ n− 1 and πn is value-based. In other
words, we apply all operator sequences up to a predefined depth and only then
engage the machine-learned control policy to select the appropriate action. Doing
so allows the control system to make decisions based on high-quality informa-
tive features, resulting in an overall increase in the quality increases. As a side
benefit, the machine learning process is greatly simplified since feature selection
and value function approximation are performed for considerably fewer process-
ing levels while benefiting from the largest amount of training data. (Figure 6
illustrates the outlined policies.) In order to determine the merit of each policy
we tested MR ADORE with static, trunk-based and least-commitment policies
along with two base-line policies: random and random trunking. A random pol-

?? An optimal sequence is the one yielding the greatest reward over all other sequences
with respect to a given input image.



Fig. 6. Four types of on-line polices.

icy is simply a least-commitment policy that randomly assigns rewards to data
tokens rather than using a machine-learned function approximator. Similarly,
a random trunk-based policy is a trunk-based policy that selects an operator
sequence (i.e., a trunk) at random rather than using a machine-learned function
approximator to assign Q-values to each of the possible sequences. As previ-
ously mentioned, trunk-based policies suffer from lack of informative features
and training examples. The performance evaluation was conducted on 35 im-
ages of forest plantations (cf. Figure1). Using a leave-one-out cross-validation
strategy (i.e, 34 for training and 1 for testing), each of the five control policies
was ran on the set of forestry images. Table 1 shows the experimental results.

Table 1. Performance of five different policies on the forestry data. 35 images of forest
plantation scenes were used in the experiment. Results for each policy were averaged over
the 35 leave-one-out cross-validation runs. % optimal refers to the fact that each policy
is evaluated relative to the best off-line interpretation achievable given a particular IPL.
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As expected, since the least-commitment policy uses a function approximator
trained on data tokens at bottom processing level that contains an exponentially
many more examples than preceding levels, this policy outperforms all other
policies? ? ? The trunk-based policy follows next†. As mentioned previously, the
lack of information at the top processing layer clearly makes the trunk-based
policy perform much worse that the least-commitment policy. The results are
consistent with previous work. In [10] the researchers (informally) report that
as less and less informative features are used to train the best-first policy, it
converges to a static policy (i.e., the best-first policy applies the same sequence
of actions regardless of input). Thus the performance of the static policy is
almost as good as the best trunk-based policy. Not surprisingly the random
policies perform the worst. It should be noted that the probability of performing
optimally for this experiment (ie randomly choosing an optimal sequence for each
image) can be easily calculated. There are 118 possible sequences for each image
and 35 images, but only one optimal sequence per image. Thus P (πoptimal) =
( 1
118 )35 ≈ 3 ∗ 10−72.

4 Future Research

One of the problems with both the trunk-based and least-commitment poli-
cies is the need for high-quality features. While both policies (trunk-based and
least-commitment) reduce the need for hand-crafted features by requiring only
a single set (respectively at either the top or bottom processing level), the need
for a domain expert is only reduced and not eliminated. Principal component
analysis (PCA) can be used to reduce the vast dimensionality of the raw data
tokens by projecting them into an eigen space [13]. This results in an auto-
matically generated set of features (typically one set per processing level). Lazy
instance-based learning (k-nearest-neighbors) [11] can then be used to approx-
imate the Qi function at level i. Additionally, the features can take the state
history into account insomuch as Qi is computed on abstracted previous states:
[fi(si), fi−1(si−1), . . . , f1(s1)] where s1, . . . , si are the states on the path from the
input image s1 to the current image at hand, si. Figure 7 demonstrates the po-
tential of using KNN with PCA-based features. An alternative to using the PCA
procedure to compress the images is to simply down-sample the images to a size
that can be managed by the modern machine learning methods. Unfortunately,
both of these methods (PCA and down-sampling) assume that the intermediate
data levels are indeed representable as images. If an intermediate processing level
consists, for example, of contour points, both PCA and down-sampling cannot

? ? ? The results presented here used an artificial neural network [12] as the function
approximator and an HSV histogram for input features. It should be noted that
other function approximation methods were used including k-nearest neighbors[11]
and sparse networks of Winnows (SNoW) [1]. In addition a number of feature sets
were tried as well.

† Here we used KNN with a number of features and distance metrics. The best results
show in the table were obtained by using texture/shape features in the form of local
binary patterns (lbp) together with a Euclidean distance measure.



2

Fig. 7. Each row from left to right: the original image, desired user-provided labeling,
optimal off-line labeling, best static policy of length 4 labeling, best-first policy labeling
(using KNN and automatically extracted features via PCA). The adaptive policy has been
observed to outperform best static policy (top row) and sometimes the human experts as
well (bottom row).

be readily applied. Thus the most probable solution to the feature extraction
problem will perhaps come in the form of feature extraction libraries (similar to
the operator libraries). Just as MR ADORE learned efficient operator selection,
next generation object recognition systems will need to select which features are
relevant [4] for a given processing layer through off-line trail-and-error processes
based, perhaps, on the very same MDP framework used today to efficiently select
operator sequences.

Automated selection of optimal πis for all processing levels is an open-ended
problem. The particular difficulty lies with the tightly coupled nature of indi-
vidual policies and the exponentially large space of all combinations of πis. An
initial investigation into bottom-up construction of π via filling the later levels
with value-based πis for i = n, n − 1, . . . one-by-one, while leaving the earlier
processing levels populated with the full expansion πj = Aj policies, appears
promising.

5 Conclusions

Conventional ways of developing image interpretation systems often require that
system developers posses significant subject matter and computer vision ex-
pertise. The resulting knowledge-engineered systems are expensive to upgrade,
maintain, and port to other domains.

More recently, second-generation image interpretation systems have used ma-
chine learning methods in order to (i) reduce the need for human input in de-
veloping an image interpretation system or port it to a novel domain and (ii)
increase the robustness of the resulting system with respect to noise and varia-
tions in the data.

In this paper we presented a state-of-the-art adaptive image interpretation
system called MR ADORE and demonstrated several exciting machine learning



and decision making problems that need to be addressed. We then reported on
the progress achieved on reducing the need for feature selection and went on to
propose ideas on how to completely eliminate the need for hand-crafted features.
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