Session Boundary Detection for Association
Rule Learning Using n-Gram Language Models

Xiangji Huang!, Fuchun Peng!, Aijun An2,
Dale Schuurmans', and Nick Cercone®

1 School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
{jhuang, f3peng, dale}@cs.uwaterloo.ca
2 Department of Computer Science, York University
Toronto, Ontario M3J 1P3 Canada
aan@cs.yorku.ca
3 Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia B3H 1W5 Canada

nick@cs.dal.ca

Abstract. We present a statistical method using n-gram language mod-
els to identify session boundaries in a large collection of Livelink log data.
The identified sessions are then used for association rule learning. Unlike
the traditional ad hoc timeout method, which uses fixed time thresh-
olds for session identification, our method uses an information theoretic
approach that provides a natural technique for performing dynamic ses-
sion identification. The effectiveness of our approach is evaluated with
respect to 4 different interestingness measures. We find that we obtain
a significant improvement in each interestingness measure, ranging from
a 26.6% to 39% improvement on average over the best results obtained
with standard timeout methods.

Keywords: Web usage mining, language modeling, evaluation.

1 Introduction

The rapidly expanding Web contains a vast amount of data that incorporates
useful information waiting to be discovered. Web usage mining is a recently
established field that focuses on developing techniques for discovering usage pat-
terns in Web log data, to better serve the needs of Web-based applications. One
important Web usage mining problem is to learn interesting association rules
from Web logs. Such rules can be used for reorganizing Web sites and making
recommendations to facilitate users’ browsing activities. However, association
rules cannot be conveniently inferred from log entries directly, because these
logs usually contain a large amount of irrelevant information and noise. There-
fore, to facilitate association rule learning, log entries are usually first grouped
into sessions that are defined as a group of user activities related to a common

purpose. In this way, session boundary detection forms a useful preprocessing
step that itself poses an interesting challenge in Web usage mining.

The goal of session identification is to divide a given sequence of page ac-
cesses into individual user sessions. The most commonly used session identi-
fication method is Time Out. Here, a user session is usually defined as a se-
quence of requests from the same IP address such that no two consecutive re-
quests are separated by an interval more than a predefined threshold. In [7],
experiments were conducted on two sets of Web logs: requests logs and Excite
(http://www.excite.com). The requests logs from Reuters (Reuters Ltd.) contain
searches on a local version of AltaVista (http://www.altavista.com). In these ex-
periments, the session logs were initially cut with a large session interval, which
was then gradually decreased while the distribution of session lengths was con-
currently recorded. Based on these experiments, the authors concluded that a
time range of 10 to 15 minutes was an optimal session interval length. [6] also
reports the results of an experiment where a Web browser was modified to record
the time interval between user actions on the browser’s interface. One result was
that the average time interval between each user event was 9.3 minutes, and
that 25.5 minutes was subsequently recommended as the threshold for session
identification. This amounts to an assumption that most statistically significant
events occurred within 1.5 standard deviations (25.5 minutes) from the mean.
However, the the optimal ¢imeout threshold depends on the specific problem.
Once a site log has been analyzed and its usage statistics obtained, a timeout
that is appropriate for the specific Web site can be fed back into the session iden-
tification algorithm. Despite the application dependence of the optimal interval
length, most commercial products use 30 minutes as a default timeout.

Obviously, a fixed timeout strategy is problematic, because users do not nor-
mally take a fixed amount of time (i.e. exactly 10 minutes or 30 minutes) for
different purposes purpose. People may stay on one topic for several hours or
jump to anther topic immediately. Instead of using a fixed time threshold for
detecting session boundaries, we propose a new method for dynamically identi-
fying session boundaries. In this paper, we present a method based on statistical
n-gram language modeling that addresses the problem of session boundary de-
tection. Our method is based on information theory and provides a natural
mechanism for performing dynamic session boundary detection. We present ex-
perimental results on a real world dataset which demonstrates its superiority
over the traditional timeout method.

The remainder of the paper is organized as follows. Section 2 provides a
brief description of n-gram language modeling. We then describe how n-gram
language models can provide a natural method for identifying session boundaries
in Section 3. Third, we describe our method for mining interesting association
rules from session data that has already been segmented (Section 4). The rules
that are discovered will be used to evaluate our approach. We then present
experimental results that demonstrate the effectiveness of our language modeling
session detection technique in Section 5. Finally, we conclude in Section 6.

2 n-Gram Language Modeling

Traditionally, the dominant motivation for language modeling has come from
speech recognition. However statistical language models have recently become
more widely used in many other application areas, including information re-
trieval [8,10,12], text classification [11], and now we are applying it for Web
mining in this paper.

The goal of language modeling is to predict the probability of natural word
sequences, or more simply, to put high probability on word sequences that ac-
tually occur (and low probability on word sequences that never occur). Given a
word sequence wyws...wn to be used as a test corpus, the quality of a language
model can be measured by the empirical perplexity and entropy scores on this
corpus [3]

1
(wi|w1 ...wi_l)

N

Perplezity =
erplexity Zl;ll Pr
Entropy = log, Perplexity

The goal is to obtain small values of these measures.

The simplest and most successful basis for language modeling is the n-gram
model. Note that by the chain rule of probability we can write the probability
of any word sequence as

Pr(wywsy...wn) = HPr(wi|w1...w,~_1) (1)

i=1

An n-gram model approximates this probability by assuming that the only words
relevant to predicting Pr(w;|ws...w;—1) are the previous n — 1 words; that is, it
assumes

PT(’LUi |U)1 ...wi_l) = Pr(wi |wi_n+1 ...wi_l)

A straightforward maximum likelihood estimate of n-gram probabilities from a
corpus is given by the observed frequency

#(Wi—ny1---w;) @)

Pr(wi|wi—py1..wi—1) = #(Wi—pt1---Wi—1)
] Wi

where #(.) is the number of occurrences of a specified gram in the training cor-
pus. Although one could attempt to use these simple n-gram models to capture
long range dependencies in language, attempting to do so directly immediately
creates sparse data problems. Using grams of length up to n entails estimating
the probability of W™ events, where W is the size of the word vocabulary. This
quickly overwhelms modern computational and data resources for even modest
choices of n (beyond 3 to 6). Also, because of the heavy tailed nature of lan-
guage (i.e. Zipf’s law) one is likely to encounter novel n-grams that were never
witnessed during training in any test corpus, and therefore some mechanism for

assigning non-zero probability to novel n-grams is a central and unavoidable issue
in statistical language modeling. One standard approach to smoothing probabil-
ity estimates to cope with sparse data problems (and to cope with potentially
missing n-grams) is to use some sort of back-off estimator.

PT’('lUilwi_n+1 ...wi_l)

~

Pr(w;|wi—py1--Wi—1),

— if #(wi,nﬂ...wi) >0 (3)
B(w;—pt1-wi—1) X Pr(w;|w; nya..w; 1),
otherwise
where
5 disc #(w;_pi1...w;
Pr(wi|wi—n+1-..wi_1) = #(i—n+1 1) (4)

#(wz’—n+1 ---wz'—l)

is the discounted probability and S(w;—pt1..-w;—1) is a normalization constant
calculated to be

B(wi—n+1 --.'I,Ui_l) =

1-— Z Pr(z|wi—pi1..wi—1)
TE(Wi—n41--Wi—1T)
- ()
1-— Z Pr($|wi,n+2...w,~,1)

TE(Wien41..-Wi—1T)

The discounted probability (4) could be computed using different smooth-
ing approaches including linear smoothing, absolute smoothing, Good-Turing
smoothing and Witten-Bell smoothing [5]. In our experiments, we only used
Good-Turing smoothing for a preliminary study, although investigating the ef-
fects of different smoothing techniques remains an interesting problem.

3 Session Detection Using n-Gram Language Models

Although the original motivation of language modeling is to estimate the proba-
bility of naturally occuring word sequences, language modeling actually provides
a general strategy for estimating the probability of any sequence—regardless of
whether the basic units consist of words, characters, or any other arbitrary al-
phabet. In this sense, many problems can be formulated as a language modeling
problem. In Web usage mining, Web pages (or objects) are visited sequentially
in a particular order, similar to the word sequences that occur in a natural lan-
guage. If we consider each visited object as a basic unit, like a word or character
in natural language, we can then attempt to estimate the probability of object
sequences using the same language modeling tools described above.

The basic goal of session identification is to group sequential log entries that
are related to a common topic, and segment log entries that are unrelated. Lan-
guage modeling provides a simple, natural approach to segmenting these log

sequences: First, imagine a set of objects on a common topic that are frequently
visited some sequence, one after another. In this case, the the entropy (or per-
plexity) of the sequence is low. However, when a new object is observed in the
sequence that is not relevant to the original topic (but in fact indicates a shift
to a new topic), the introduction of this new object causes an increase in the en-
tropy of the sequence because it is rarely visited after the preceding objects. Such
an entropy increase serves as a natural signal for session boundary detection. If
the change in entropy passes a threshold, a session boundary could be placed
before the new object. Put another way, the uncertainty (which is measured by
entropy) within a session should be roughly constant, allowing for a fixed level
of variability within a topic. However, whenever the entropy increases beyond
a threshold, this presents a clear signal that the user’s activity has changed to
another topic. Thus, we should set a session boundary at the place where the
entropy changes. The threshold on entropy change can be tuned to adjust the
number of sessions generated. A general principle for setting the threshold is to
generate the number of sessions whose average length is in a reasonable range
(say, 30 objects). However, more principled ways for setting the threshold could
be investigated.

Figure 1 shows the entropy sequence we obtained in part of our Web log
dataset, which shows the entropy evolution of the first 10,000 objects. As one
can see, the entropy changes radically at some points, although it remains stable
in other places. This figure gives an intuition how entropy could be used for
session boundary detection.

entropy

12 b

11k b

1051 q

10 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the order of accessed objects

Fig. 1. Entropy evolution in our Web log dataset

4 Mining Interesting Association Rules

We implemented the Apriori algorithm [1] to learn association rules from the
pre-segmented Web log data. We then used these discovered association rules
to evaluate the quality of our session detection method. As in previous research
on Web usage mining, the set of pages to be considered are first identified from
all log entries, and then a session file is built upon the identified pages. In our
experiments, we initially identified all of the pages involved in the Livelink log
files provided to us. Since almost all of the pages in Livelink are actually dynamic,
the number of individual pages is huge'. However, the problem is not in the
number of pages, but in the usefulness of dynamic pages. When we analyzed the
discovered patterns that describe access relationships among pages, we found
that many of those patterns reveal the programming patterns within Livelink.
For example, two pages can be found to be always accessed together because
one a frame within the other, as defined by the Livelink program. Such patterns
were not considered to be interesting by our domain experts. Another feature
of this data is that there could be great similarity in the contents of different
dynamic pages. That is, in our data two dynamic pages might be considered
different, even though they contain the same set of information objects. In order
to discover truly interesting and unexpected patterns, we first performed an
object identification pass over the the dynamic pages caputured in the data,
and then built the session file based on the objects and not the dynamic pages
themselves.

The discovered association rules describe the association relationships be-
tween the information objects. For example, an association rule

(01,02,03) — (04, 05) [support = 0.01 con fidence = 0.6]

means that 1% of the sessions contain objects 01,02, 03,04 and 05, and that
60% of the sessions containing 01,02 and 03 also contain 04 and 05. The number
of association rules that are discovered depends on the support and confidence
thresholds. For our dataset, we found that the number of rules generated is not
significantly affected by changing the confidence threshold. However, changing
the support threshold affects the number of retrieved rules substantially. Table 1
shows how the number of rules varies with the support threshold. From this

[Support threshold _[0.02]0.01]0.008]0.005]0.003]0.0028]0.0025] 0.002_| __ 0.001
[Number of assoc. rules| 2 | 14 | 30 | 88 | 723 | 4,556 |74,565|4,800,070|>1,000,000,000]

Table 1. Number of generated association rules (confidence threshold = 0.5)

table, one can see that a large number of rules can be discovered if the support
threshold is set very low. For evaluation purposes, to find interesting rules from

! We identified nearly 200,000 pages from the two-month data.

a large number of discovered patterns, we rank the discovered rules according
to their interestingness measures and prune out redundant rules based on the
structural relationship among rules.

We considered four interestingness measures for the purpose of evaluating
our new session detection method. These measures were used to measure the
interestingness of an association rule A — B 2, as shown below. Using support
and confidence to measure the interestingness of a discovered rule is straight-
forward. However, no interesting rules have been found in our experiments by
using support as the interestingness measure. So we choose the confidence as one
of interestingness methods for evaluation. The reason why we choose the mea-
sures 1.S, M D and C2 is that they are among the best interestingness measures
according to our earlier work in [9].

1. C2 [4]. The C2 formula measures the agreement between A and B. It has
been evaluated as a good rule quality measure for learning classification rules
[2]. It can be defined as

_ P(B|A)-P(B) 1+ P(AB)
C==9"pm X 2

2. Confidence (CS). The confidence of a rule or pattern can be expressed as
P(B|A). For association rules, P(B|A) means the probability that objects in
B occur in a session conditioned on the occurrence of objects in A. With this
measure, rules are ranked according to their confidence value as the main
key and their support value as the secondary key. Therefore, this measure is
denoted as CS.

3. IS [13]. Derived from statistical correlation, the IS measure is defined as

IS is designed to be better suitable for the scenario in which the support
value of the rule is low.

4. Measure of Discrimination (M D) [2]. The MD measure was inspired by a
query term weighting formula used in information retrieval and has been
used to measure the quality of classification rules [2]. We adopt the formula
to measure the extent to which an association rule A — B can discriminate
between B and B:

P(A|B)(1 - P(A|B))

MP =108 5 4By 1 - P(AIB)

All the above-listed measures except M D and C2 have been used to mea-
sure the interestingness of association rules. M D and C2 have only been used
to measure classification rules. The values from the MD and C2 measures can

% In association rule A — B, A and B are sets of objects.

be zero or negative, indicating A and B are not correlated or they are nega-
tively correlated, respectively. In our learning programs, rules with this kind of
interestingness values are considered uninteresting and are pruned.

The use of an interestingness measure can help identify interesting association
rules by ranking the discovered rules according to the measure. However, it
cannot be used to identify redundant rules. By redundant rules we mean that
the same semantic information is captured by multiple rules and hence some of
them are considered redundant. We use four pruning methods proposed in [9]
for pruning redundant association rules (details omitted here).

5 Empirical Evaluation

We now empirically evaluate the effectiveness of our language modeling based
session detection method on the Livelink dataset. We first describe the Livelink
dataset in Section 5.1 and how the raw data is preprocessed in Section 5.2.
Then in Section 5.4 we present the results of association rule learning given
segmentations produced by both the traditional timeout and language modeling
techniques. We then analyze the results in Section 5.5.

5.1 The Data Set

The log files used in our experiments were extracted from Livelink access data
over a period of two months (April and May 2002). Livelink is a Web-based
system?® that provides automatic management and retrieval of a wide variety of
information objects over an intranet or extranet. The size of the raw data is
7GB. The data set describes more than 3,000,000 requests made to a Livelink
server from around 5,000 users. Each request corresponds to an entry in the log
files, where each entry contains: 1, the IP address the user is making the request
from; 2, the cookie of the browser the user is making request from, which can be
as long as 5,000 bytes; 3, the time the request is made and the time the required
page is presented to the user; 4, the name of the request handler in the Livelink
program; 5, the name of the method within the handler that is used to handle
the request; 6, the query strings that can be used to identify the page and the
objects being requested, and some other task relevant information, such as URL
addresses for error-handling. A sample log entry of Livelink is shown in Figure
2. For privacy and security reasons, some of the lines are removed.

5.2 Data Preprocessing

The objective of data preprocessing is to transform the raw log data into a form
that can be used for learning patterns. The following steps are performed to
preprocess the data in our investigation: 1, the user is identified from each log
file entry; 2, the requested information objects are identified from each entry; 3,

3 Developed and sold by Open Text Corporation.

Wed Apr 10 19:22:52 2002 CONTENT_LENGTH = ’0’ func = ’11°

GATEWAY_INTERFACE = °CGI/1.1°> HTTPS = ’on’ HTTPS_KEYSIZE = ’128°

HTTPS_SECRETKEYSIZE = ’1024° HTTPS_SERVER_ISSUER = ’C=US, 0="RSA

Data Security, Inc.", OU=Secure Server Certi fication Authority’

HTTPS_SERVER_SUBJECT = ’C=CA, S=0Ontario, L=Waterloo, 0U=Terms of

use at www.cibc.com/verisign/rpa (c)99,

OU=Authenticated by CIBC, 0U="Member, VeriSign Trust Network", 0=Open Text Corporation, 0U=Network and
Online Services, CN=intranet.opentext.com’

HTTP_ACCEPT = ’x/*’ HTTP_ACCEPT_ENCODING = ’gzip, deflate’

HTTP_ACCEPT_LANGUAGE = ’en-us’ HTTP_CONNECTION = ’Keep-Alive’

HTTP_COOKIE = ’WebEdSessionID=05CAB314874CD61180FE00105A9A1626; LLInProgress=/2FIQPiE00D4iNz4iMzk3Py8vIA;
LLCookie=%2FIOPiE00D4iNz4iMzk3MHhvZHd%2Fb28hbWuaWVifyEkaWFuYW8gAA; LLTZCookie=3600’

HTTP_HOST = ’intranet.opentext.com’ HTTP_REFERER =
’https://intranet.opentext.com/intranet/livelink.exe?func=doc.Vie

wDoc&nodeId=12856199° HTTP_USER_AGENT = ’Mozilla/4.0 (compatible;

MSIE 5.01; Windows NT 5.0)° objAction = ’viewheader’ objId =

212856199° PATH_TRANSLATED = ’C:\Inetpub\wwwroot’ QUERY_STRING =
’func=11%o0bjId=12856199%objAction=viewheader’ REMOTE_HOST =

224.148.27.239° REQUEST_METHOD = ’GET’ SCRIPT_NAME =

’/intranet/livelink.exe’ SERVER_NAME = ’intranet.opentext.com’

SERVER_PORT = ’443° SERVER_PROTOCOL = ’HTTP/1.1° SERVER_SOFTWARE =

’Microsoft-IIS/5.0° _REQUEST = ’1lweb’ Wed Apr 10 19:22:52 2002 -

638968 Func=’11.12856199.viewheader’ Timing:.140

0A<1,0, ’Number_of_Dele

te_Statements’=0, ’Number_of_Insert_Statements’=0, ’Number_of_0ther_Statements’=0, ’Number_of_Select_Statemen

ts?=7, ’Number_of_Update_Statements’=0, ’QutputTime’=47, ’Total_Execute_Time’=16, ’Total_Fetch_Time’=31,’Total

_SQL_Statements’=7,’Total_SQL_Time’=47> 04/10/2002 19:22:52

Done with Request on socket 069DC4BO 04/10/2002 19:22:57

Processing Request on socket 09A87TEF8

Fig. 2. A Livelink log entry

noisy entries are removed (which request no interesting objects); and finally, 4,
the log file entries are grouped into sessions according to our language modeling
based method outlined above. In this experiment, we use IP addresses to stand
for users of Livelink. Even though the same user can log into Livelink through
different TP addresses, most often a user accesses Livelink from the desktop in
his/her office, and therefore most of the accesses are associated with a fixed IP
address. This is actually a safer assumption than using cookies to identify users,
because cookies are often disabled. Identifying objects from the large number of
dynamic Livelink pages is an unique part of the problem. An object could be a
document (such as a PDF file), a project description, a task description, a news
group message, a picture and so on. Different types of objects have different
domains of identities. Based on Livelink domain knowledge we can extract the
identities of the objects being requested from the the query string of the log
entry. Most entries contain exactly one object, although some entries contain no
objects or multiple objects. We ignore all entries that contain no information
objects. The total number of different objects identified from the two-month
Web log data is 38,679.

5.3 Session Identification

After the users and objects have been identified from the log entries, we grouped
the requests into sessions. In our application, a session is an ordered sequence

object sets requested by a user during a single visit to Livelink. In most cases, a
session is defined as a group a of actions requested by a single user, where that
no two consecutive requests are separated by an interval more than a predefined
threshold during a limited time of period for a purpose. The method using this
definition for identifying sessions is called the timeout session detection method.

There are two kinds of session detection methods used in the experiments.
The first one uses the timeout method to identify sessions, in which we set the
fixed time thresholds to be 5, 10, 15, 20, 25, 30, 35 and 40 minutes in the
experiments. The second one uses an n-gram language modeling based method
to identify sessions. In the experiments, we set n to be 1, 2 and 3 respectively
and the corresponding thresholds are set to be 0.005, 0.003 and 0.0025. We
will evaluate these two session detection methods by comparing the number of
discovered interesting rules in the top 10, top 20 and top 30 lists generated from
the two session detection methods.

5.4 Experimental Results

As shown in Table 1, the number of generated rules greatly depends on the sup-
port threshold. At low support regions, a very small change in support threshold
can lead to a super exponential growth in the number of rules. To avoid missing
interesting rules or generating too many rules, we carefully chose the the sup-
port and confidence thresholds for each method in the experiments. The value
of confidence is set to be 0.5 for all the language modeling based methods and
the timeout methods at different time interval. For example, we set the support
and confidence thresholds to be 0.0028 and 0.5 for the timeout session detec-
tion method at the 10 minutes time threshold in the experiments. The number
of rules generated under this setting is 4,556. The support thresholds for the
standard methods at the other time interval are set to be values that lead to
generation of a similar number of rules.

Results of Timeout Method: Our baseline model is the timeout approach,
which is the standard method currently used in many Web mining research in-
vestigations. For this method, we conducted experiments on time out thresholds
of 5, 10, 15, 20, 25, 30, 35 and 40 minute thresholds. The results for the top 10,
top 20 and top 30 are shown in Table 2, 3, and 4 respectively. The first row in
Table 2 is the number of sessions generated under each threshold. The entries in
Table 2, 3 and 4 represent the number of interesting association rules discovered
by each interestingness measure with different thresholds among the top 10, 20
and 30 4. The last two rows are the total number of interesting rules discovered
by the 4 interestingness measures and the percentage of interesting rules dis-
covered, which is computed as the number of total interesting rules discovered
divided by the total number of generated rules.

4 All the discovered association rules were evaluated by our domain experts in Open
Text.

time intervals||5 min.|10 min.|15 min.{20 min.|25 min.|30 min.|35 min. {40 min.
C2 3 6 6 6 6 6 6 6
CS 2 1 1 4 4 4 4 4
1S 3 5 5 4 5 6 5 5
MD 6 7 7 10 10 8 8 8
Total 14 19 19 24 25 24 23 23
Percentage || 35% | 47.5% | 47.5% | 60% |62.5%| 60% | 57.5% | 57.5%

Table 2. Top 10 results with timeout method for session boundary detection

time intervals||5 min.|10 min.|15 min.{20 min.|25 min.|30 min.|35 min.{40 min.
C2 4 12 11 11 12 11 12 12
CS 3 5 4 8 5 6 6 6
IS 5 10 8 8 8 10 10 12
MD 10 14 14 16 18 18 18 18
Total 22 41 37 43 43 45 46 48
Percentage |[27.5%(51.25% [46.25% (53.75% |53.75% |56.25% | 57.5% | 60%

Table 3. Top 20 results with timeout method for session boundary detection

The best performance obtained in top 10, top 20 and top 30 are 62.5%, 60%
and 65.83% under time thresholds 25, 40 and 40 minutes.

Results of Language Modeling Based Method: For the language model-
ing based methods, we experimented with 1-gram, bi-gram, 3-gram models using
Good-Turing smoothing. A different threshold is set for each model to generate
roughly the same number of sessions, which is 0.0005, 0.0003, 0.00025 respec-
tively. The results are shown in Table 5, 6 and 7 respectively. The first row of
the table is the models used (for example, GT1.5 means 1-gram language model

time intervals|| 5 min. |10 min.|15 min.|20 min.|25 min.|30 min.|35 min. |40 min.
C2 9 17 16 15 17 19 21 22
CS 5 8 8 12 12 12 12 12
IS 11 18 16 24 18 18 20 19
MD 18 24 24 30 26 26 26 26
Total 43 67 64 74 73 75 79 79
Percentage ||35.83%|55.83% |53.33% |61.67% [60.83% | 62.5% |65.83%|65.83%

Table 4. Top 30 results with timeout method for session boundary detection

with Good-Turing smoothing and the entropy change threshold is 0.0005). Other
rows are of the same meaning of Table 2. The values of support for association
rule learning are set to be 0.0042, 0.0036 and 0.00336 for the models GT1.5,
GT2.3 and GT3.25 respectively. Under this setting, a similar number of rules
can be generated for all the three models.

LM models||GT1.5|GT2.3|GT3.25

C2 9 9 9
CS 7 2 3
IS 8 10 8
MD 10 10 10

Total 34 31 30
Percentage| 85% |77.5%| 75%

Table 5. Experimental top 10 for language modeling methods

LM models|| GT1.5 |GT2.3 |GT3.25
C2 18 18 18
CS 13 9 4
IS 16 18 18
MD 20 20 20
Total 67 65 60
Percentage (|83.75%(81.25%| 75%

Table 6. Experimental top 20 for language modeling methods

In the language modeling based methods, the results obtained for top 10, top
20 and top 30 are 85%, 83.75% and 83.33%.

5.5 Analysis and Discussions

Effects of Different Thresholds in Timeout Method: The standard time-
out session detection method obviously depends on the time threshold. We find
that generally time thresholds between 25 minutes and 40 minutes are good. A
threshold that is too small (say, 5 minutes) leads to poor performance. Figure. 3
illustrates the influence of different time thresholds in top 10 results.

Effects of Language Modeling based Method: Table 8 shows the improve-
ments made by the language modeling based method compared to the standard

LM models||GT1.5| GT2.3 |GT3.25
C2 27 28 26
CS 15 14 4
1S 26 28 28
MD 30 30 30
Total 98 100 88
Percentage (|81.67%|83.33%|73.33%

Table 7. Experimental top 30 for language modeling methods

5 10 15 20 25 30 35 40

Timeout threshold

w
o

N
a1

[ERY
ol

Number of interesting rules
N
o

Fig. 3. Timeout method comparison at different thresholds

timeout method. We choose the best result from each method. We observe that
a significant improvement can be made for top 10, 20 and 30 results.

It is also interesting to notice that performance of each language modeling
based method is much better than the best one obtained in the timeout meth-
ods. Figure 4 shows the the comparison among the language modeling methods
and the best timeout method in top 10 results. By looking into each interest-
ing measure, we find that the language modeling based approach consistently
outperforms all of the timeout methods at the top 10, 20 and 30.

All of these results demonstrate that the language modeling approach is
effective at identifying session boundaries for association rule learning.

Effects of different order of n-gram language models: We find that in
language modeling based approach, better results are obtained on 1-gram and

Timeout based|LM based|{Improvements
top 10 62.5% 85% 36%
top 20 60% 83.75% 39.6%
top 30 65.83% 83.33% 26.6%

Table 8. Effects of LM based methods

35

30

25

Number of interesting rules

20
standard GT1.5 GT2.3 GT3.25

Method

Fig. 4. Comparison of language modeling and timeout methods

2-gram models. One reason is that sparse data problems begin to dominate for
n-gram language modeling with longer context (see Section 2). Although we do
not have to cope with unseen events in this domain (because we are detecting
boundaries on the training set) the statistics one obtains from limited training
data is not reliable when there are too many parameters being estimated.

6 Conclusions and Future Work

We have proposed a novel approach for dynamic session boundary detection
based on statistical n-gram language modeling. This approach is based on infor-
mation theory and is intuitively understandable. Experiments on learning inter-
esting association rules from the Livelink dataset show that we obtain consistent
improvements over the traditional ad-hoc timeout methods when preprocessing
the data for association rule discovery.

Our future work includes investigating the optimal order of n-gram language
models, the influence of different smoothing techniques in language modeling,

and the effect of this approach for other Web usage mining problems, such as
sequential pattern mining.

7 Acknowledgements

We would like to thank Gary Promhouse for spending a lot of time evaluating
the discovered association rules in the experiments. Without his help and useful
feedback, this research cannot be fully conducted. We also would like to thank
Open Text Corporation for supporting this research and providing us with its
Livelink Web log datasets.

References

1. Agrawal, R. and Srikant, R.; (1994). Fast Algorithms for Mining Association Rules,
Proc. of the 20th International Conference on Very Large Databases, Santiago, Chile.

2. An, A. and Cercone, N.; (2001). Rule Quality Measures for Rule Induction Systems:
Description and Evaluation, Computational Intelligence, Vol. 17 No. 3.

3. Bahl, L., Jelinek, F. and Mercer, R.; (1983). A Maximum Likelihood Approach to
Continuous Speech Recognition IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(2), pp. 179-190.

4. Bruha, I.; (1996). Quality of Decision Rules: Definitions and Classification Schemes
for Multiple Rules. In Nakhaeizadeh, G. and Taylor, C. C. (eds.): Machine Learning
and Statistics, The Interface. Jone Wiley & Sons Inc.

5. Chen, S. and Goodman, J.; (1998). An Empirical Study of Smoothing Techniques
for Language Modeling. Technical report, TR-10-98, Harvard University.

6. Catledge, Lara D. and Pitkow, James E.; (1995) Characterizing Browsing Strate-
gies in the World Wide Web, Proceedings of the 8rd International World Wide Web
Conference, April 1995, Darmstadt, Germany.

7. He, D. and Goker, A.; (2000). Detecting session boundaries from Web user logs, Pro-
ceedings of the 22nd Annual Colloguium on Information Retrieval Research (ECIR),
April 2000, Sidney Sussex College, Cambridge, England.

8. Hiemstra, D.; (2001). Using Language Models for Information Retrieval. Ph.D. The-
sis, Centre for Telematics and Information Technology, University of Twente.

9. Huang, X., An, A., Cercone, N. and Promhouse, G; (2002) Discovery of Interesting
Association Rules from Livelink Web Log Data. In Proceedings of the IEEE Inter-
national Conference on Data Mining (ICDM), December, 2002, Maebashi TERRSA,
Maebashi City, Japan.

10. Lafferty, J. and Zhai, C.; (2001). Document Language Models, Query Models, and
Risk Minimization for Information Retrieval. In Proceedings of 24th ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR).

11. Peng, F. and Schuurmans, D.; (2003). Combining Naive Bayes and n-Gram Lan-
guage Models for Text Classification. submitted to The 25th European Conference
on Information Retrieval Research (ECIR).

12. Ponte, J. and Croft, W.; (1998). A Language Modeling Approach to Information
Retrieval. In Proceedings of ACM Research and Development in Information Retrieval
(SIGIR), 275-281.

13. Tan, P. and Kumar, V.; (2000). Interestingness Measures for Association Patterns:
A Perspective, Technical Report TR00-036, Department of Computer Science, Univ.
of Minnestota.

