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Abstract

Multi-robot learning faces all of the challenges of
robot learning with all of the challenges of mul-
tiagent learning. There has been a great deal of
recent research on multiagent reinforcement learn-
ing in stochastic games, which is the intuitive ex-
tension of MDPs to multiple agents. This recent
work, although general, has only been applied to
small games with at most hundreds of states. On
the other hand robot tasks have continuous, and of-
ten complex, state and action spaces. Robot learn-
ing tasks demand approximation and generaliza-
tion techniques, which have only received exten-
sive attention in single-agent learning. In this paper
we introduce GraWoLF, a general-purpose, scal-
able, multiagent learning algorithm. It combines
gradient-based policy learning techniques with the
WoLF (“Win or Learn Fast”) variable learning rate.
We apply this algorithm to an adversarial multi-
robot task with simultaneous learning. We show re-
sults of learning both in simulation and on the real
robots. These results demonstrate that GraWoLF
can learn successful policies, overcoming the many
challenges in multi-robot learning.

Introduction

Multi-robot learning is the challenge of learning to act in

an environment containing other robots. These other robot

equilibria. An equilibrium is simply a policy for all of the
players where each is playing optimally with respect to the
others. This concept is a powerful solution for these games
even in a learning context, since no agent could learn a better
policy when all the agents are playing an equilibrium.

Multiagent learning in stochastic games, thus far, has only
been applied to small games with enumerable state and action
spaces. Robot learning tasks though have continuous state
and action spaces, and typically with more than just a couple
dimensions. Discretizations of this space into an enumerable
state set also do not typically perform well. In addition, data
is considerably more costly to gather, and millions of training
runs to learn policies is not feasible. Typical solutions to this
robot learning problem is to use approximation to make the
learning tractable and generalization for more efficient use of
training experience.

In this paper we introduce a new algorithm, GrawéLF
that combines approximation and generalization techniques
with the WoLF multiagent learning technique. We show em-
pirical results of applying this algorithm to a problem of si-
multaneous learning in an adversarial robot task. In Section 2,
we give a brief overview of key concepts from multiagent
learning along with the the formal model of stochastic games.
In Section 3, we describe a particular adversarial robot task
and its challenges for learning. In Section 4, we present the
main components of GraWoLF: policy gradient ascent and
the WoOLF variable learning rate. In Section 5, we present
experimental results of applying this algorithm to our adver-
§arlal robot task, and then conclude.

though, have their own goals and may be learning as well.
Other adapting robots make the environment no longer sta2 Multiagent Learning

tionary, violating the Markov property that traditional single-
agent behavior learning relies upon. Multi-robot learning
combines all of these multiagent learning challenges with th

problems of learning in robots, such as continuous state an set of statesd,; is the set of actions available to agéand

acRon spatcej a'?d rrfunlmal ttralmnglj(data tiagent | A is the joint action spacel; x ... x A,), T is a transition

. great deal of recent work on muliagent fearm- ¢,,qiong « A x S — [0, 1], andRZ- is a reward function for

ing has _Iooked at the p_roblem of learning In StOChaSt'cthez’th agentS x A — R. This looks very similar to the MDP

3&‘{1195['58%";@'61994' ?&ngh;tHalll., 22(%;),[ Baowl!ng and  famework except we have multiple agents selecting actions
€l0so, a, reenwald and nall, 2HYUS0Chastic games o, the next state and rewards depend on the joint action of

are a ngtural extension of Markov decision processes (.MDP e$1e agents. Another important difference is that each agent

to multiple agents and have been well studied in the fieldot” ~ "=~ " ~

game theory. The traditional solution concept for the prob- 1GraWoLF is short for “Gradient-based Win or Learn Fast”, and

lem of simultaneously finding optimal policies is that of Nashthe ‘a’ has the same sound as in “gradient”.

Multiagent learning has focused on the game theoretic frame-
work of stochastic games. Atochastic gamés a tuple
,S,A1..n, T, Ry ), Wheren is the number of agents, is



has its own separate reward function. The goal for each agent
is to select actions in order to maximize its discounted future s
rewards with discount factoy. |
Stochastic games are a very natural extension of MDPs to
multiple agents. They are also an extension of matrix games
to multiple states. Each state in a stochastic game can be
viewed as a matrix game with the payoffs for each joint action
determined by the matrice®; (s, a). After playing the matrix
game and receiving their payoffs the players are transitioned
to another state (or matrix game) determined by their joint
action. We can see that stochastic games then contain both
MDPs and matrix games as subsets of the framework.

Stochastic Policies. Unlike in single-agent settings, deter-
ministic policies in multiagent settings can often be exploited
by the other agents. Consider the children’s game rock-pape

. X oh ffigure 1: An adversarial robot task. The top robot is trying to
scissors. If one player were to play any action determinis

get inside the circle while the bottom robot is trying to stop

tically, _the other player_could_win every _time by selec_:ting it. The lines show the state and action representation, which
the action that defeats it. This fact requires the con5|derai-S described in Section 4.3

tion of mixed strategies and stochastic policies. A stochastic

policy, 7 : S — PD(A;), is a function that maps states to

mixed strategies, which are probability distributions over theother players’ possibly changing policies. This approach, too,
player's actions. We later show that stochastic policies aréas a strong connection to equilibria. If these algorithms con-
also useful for gradient-based learning techniques. verge when playing each other, then they must do so to an
equilibrium[Bowling and Veloso, 2003a

T . . . Neither of these approaches, though, have been scaled be-
Nash Equilibria. Even with the concept of stochastic poli- yonq games with a few hundred states. Games with a very
cies there are still no optimal policies that are independent };rge number of states, or games with continuous state spaces,
the other players’ policies. We can, though, define a notion gknake state enumeration intractable. Since previous algo-
best-response. A policy iskzest-respons® the other play-  yithms in their stated form require the enumeration of states
ers’ policies if it is optimal given their policies. The major ad- gither for policies or value functions, this is a major limita-
vancement that has driven much of the development of matri, |, this paper we examine learning in an adversarial robot
games, game theory, and even stochastic games is the notipfl, \yhich can be thought of as a continuous state stochas-
of a best-response equilibrium, blash equilibriumNash, game. Specifically, we build on the idea of best-response
Jr., 1950. learners using gradient technigU&nghet al., 2000; Bowl-

A Nash equilibrium is a collection of strategies for each of;,4 and Veloso 2003a We first describe our robot task and
the players such that each player’s strategy is a best-respo n describe o'ur algorithm and results.

to the other players’ strategies. So, no player can do bet-

ter by changing strategies given that the other players als .

don't change strategies. What makes the notion of equilibg An Adversarial Robot Task

rium compelling is that all matrix games and stochastic gamegonsider the adversarial robot task shown in Figure 1. The

have such an equilibrium, possibly having multiple equilib- robot at the top of the figure, the attacker, is trying to reach

ria. Zero-sum, two-player games, like the adversarial taskhe circle in the center of the field, while the robot closer to

explored in this paper, have a single Nash equilibrfum. the circle, the defender, is trying to prevent this from hap-
pening. If the attacker reaches the circle, it receives a re-

Leaming in Stochastic Games. Stochastic games have ward of one and the defender receives a reward of negative

been the focus of recent research in the area of reinforcemejpe‘ These are the pnly rewards in the task. When thg at-
learning. There are two different approaches being explored2cker reaches the circle or ten seconds elapses, the trial is
The first is that of algorithms that explicitly learn equilibria OV" @nd the robots reset to their initial positions, where the
through experience, independent of the other players’ policyattaCker IS a meter from the circle and the_defgnder _half—way
e.g., [Littman, 1994: Greenwald and Hall, 200ZThese al- between. The robots simultaneously learn in this environment

ach seeking to maximize its own discounted future reward.
or all of our experiments the discount factor used was 0.8
or each full second of delay.

The robots themselves are part of the CMDragons robot
soccer team, which competes in the RoboCup small-size
league. There are two details about the robot platform that

2There can actually be multiple equilibria, but they all have equalare relevant to this learning task. First, the learning algorithm
payoffs and are interchangeable. itself is situated within a large and complex architecture of

gorithms iteratively estimate value functions, and use the
to compute an equilibrium for the game. A second approac
is that of best-response learners, e.fClaus and Boutilier,
1998; Singlet al,, 2000; Bowling and Veloso, 200Rar hese
learners explicitly optimize their reward with respect to the



existing capability. The team employs a global vision systenstochastic policy according to,

mounted over the field. This input is processed by an elab- o0 bsa
orate tracking module that provides accurate positions and mo(s,a) = ST
velocities of the robots. These positions comprise the input 2 et

state for the learning algorithm. The team also consists of roSutton and colleagues’ main result was a convergence proof
bust modules for obstacle avoidance and motion control. Théor the following policy iteration rule that updates a policy’s
actions for the learning algorithm then involve providing tar- parameters in a Gibbs distribution according to,
et points for the obstacle avoidance module. Situating th -

I%arlging within the context of this larger architecture fochJses(é’“*1 = O+ 01D d™(5) Y bsa 10, (5,0) i (5,0) (1)
the learning. Rather than having the robot learn to solve well ) : @ ) ]
understood problems like path planning or object tracking,/w: (s:@) is an independent approximation ¢f™x (s, a)
the learning is directed at the heart of the problem, the multiWith parametersv, which is the expected value of taking ac-
robot interaction. tion a from states and then following the policyrs,. For

Second, the system control loop that is partially describedhe Gibbs distribution, Sutton and colleagues showed that for

above has inherent, though small, latency. Specifically, aftefonvergence this approximation should have the following

an observed change in the world 100ms will elapse before theorm,

robot’s response is executed. This latency is overcome for

each robot’s own position and velocity by predicting through fwi(s,a) = Wi |¢sa — Zﬂek (5,0)ps| - (2)

this latency using knowledge of the past, but not yet executed, b

actions. Since the actions of the opponent robots are n@is they point out, this amounts 3, being an approximation

known, this prediction is not possible for other robots. La-of the advantage functiodd™(s,a) = Q™ (s,a) — V™(s),

tency effectively adds an element of partial observability towhere V™ (s) is the value of following policyr from state

the problem, since the agents do not have the complete state It is this advantage function that we estimate and use for

of the world, and in fact have separate views of this state. Nogradient ascent.

tice, that this also adds a tactical element to successful poli- Using this basic formulation we derive an on-line version

cies. A robot can “fake” the opponent robot by changing itsof the learning rule, where the policy’s weights are updated

direction suddenly, knowing the other robot will not be ablewith each state visited. The summation over states can be re-

to respond to this change for a full latency period. moved by updating proportionately to that state’s contribution
This task involves numerous challenges for existing multi-to the policy’s overall value. Since we are visiting states on-

agent learning techniques. These challenges include continpelicy then we only need to weight later states by the discount

ous state and action spaces, elements of partial observabilifgctor to account for their smaller contribution.¢lfime has

due to system latency, and violation of the Markov assumppassed since the trial start, this turns Equation 1 into,

tion since many of the system components have memory, e.g.,

the tracking axd the o)t/)stacle avgidance modules. Ir?facqc, Otr = Ok +7t‘5’fz¢w 70, (5,0) fwi (,a). (3)

these limitations may even make equilibria cease to exist alto- S ) o

getherlBowling and Veloso, 200db This is a further reason ~ Since the whole algorithm is on-line, we do the policy im-

for exploring best-response learning techniques, which donrovement step (updating) simultaneously with the value

directly seek to learn an equilibrium. We now present Gra-estimation step (updating). We do value estimation using

WoLF, a best-response learning algorithm that can handle th@adient-descent Sarsg([Sutton and Barto, 199&ver the

S

challenges of multi-robot learning. same feature space as the policy. This requires maintaining
an eligibility trace vectore. The update rule is then, if at
im h misin nd tak ion transitionin

4 GraWoLE time k the system is in stateand takes action transitioning

to states’ in time ¢ and then taking action’, we update the
GraWoLF, or Gradient-based WoLF, combines two key ideadrace and the weight vector using,
from reinf(_)rcementle_arning: policy gradient Iearning_anqthe eri1 = Mlep+ b, 4
WOLF variable learning rate. Policy gradient learning is a . ,
technique to handle intractable or continuous state spaces. w, ., = wy+ep1p ( r+7 Qw, (s, d) ) . (5)
WOLF is a multiagent learning technique that encourages —Qw,(s,0)
best-response learning algorithms to converge in situations afhere) is the Sarsa parameter anglis an appropriately de-
simultaneous learning. We briefly describe these techniquesayed learning rate. The addition of raisingo the power

and how they are combined. t allows for actions to take differing amounts of time to
) ] execute, as in semi-Markov decision proced&aston and
4.1 Policy Gradient Ascent Barto, 1998.

We use the policy gradient technique presented by Sutton and_The policy improvement step then uses Equation 3 where
colleagues [2000]. Specifically, we define a policy as a Gibbg IS the state of the system at tirkeand the action-value es-
distribution over a linear combination of features of a candi-timates from Sarsa), , are used to compute the advantage
date state and action pair. Létbe a vector of the policy’s term. We then get,

parameters and let,, be an identically sized feature vector _ _ (6
for states and actiorz, then the Gibbs distribution defines a foni (3, ) Qui(s:0) ; 70, (8 0) Qi (5, 2)- (6)



This forms the crux of GraWoLF. What remains is the selec-dimensional input space. These seven dimensions are shown
tion of the learning ratej;. This is where the WoLF variable by the white overlaid lines in Figure 1.

learning rate is used. We chose to use tile codirf@utton and Barto, 1998also
. known as CMACS, to construct our feature vector. Tile cod-
4.2 Win or Learn Fast ing uses a number of large offset tilings to allow for both a

WoLF (“Win or Learn Fast”) is a method by Bowling and fine discretization and large amount of generalization. We
Veloso [2002a] for changing the learning rate to encourageise 16 tiles whose size was 800mm in distance dimensions
convergence in a multiagent reinforcement learning scenari@and 1600mm/s in velocity dimensions. We simplify the ac-
Notice that the policy gradient ascent algorithm above doesion space by requiring the attacker to select its navigation
not account for a non-stationary environment that arises witlpoint along a perpendicular line through the circle’s center.
simultaneous learning in stochastic games. All of the othefhis is shown by the dark overlaid line in Figure 1. This line,
agents actions are simply assumed to be part of the enviwvhose length is three times the distance of the attacker to the
ronment and unchanging. WoLF provides a simple way tccircle, is then discretized into seven points evenly distributed.
account for other agents through adjusting how quickly orThe defender uses the same points for its actions but then nav-
slowly the agent changes its policy. igates to the point that bisects the line from the attacker to the
Since only the rate of learning is changed, algorithmsselected action point. The robot’s action is also included in
that are guaranteed to find (locally) optimal policies in non-the tiling as an eighth dimension with a tile size for that di-
stationary environments retain this property even when usmension of the entire line, so actions are distinguishable but
ing WoLF. In stochastic games with simultaneous learningthere is also generalization. Agents select actions every tenth
WOoLF has both theoretical evidence (limited to two-player,of a second, or after every three frames, unless the feature
two-action matrix games), and empirical evidence (experivector has not changed over that time. This keeps the robots
ments in games with enumerated state spaces) that it efrom oscillating too much during the initial parts of learning.
courages convergence in algorithms that don’t otherwise con-
verge. The intuition for this technique is that a learner should;  Resuylts
adapt quickly when it is doing more poorly than expected.
When it is doing better than expected, it should be cautioug3efore presenting results on applying GraWoLF to this prob-
since the other players are likely to change their policy. Thigem we first consider some issues related to evaluation.
implicitly accounts for other players that are learning, rather )
than other techniques that try fo explicitly reason about thé-1 Evaluation

others’ action choices. Evaluation of multi-robot learning algorithms present a num-
The WoLF principle naturally lends itself to policy gradi- ber of challenges. The first is the problem of data gathering
enttechniques where there is a well-defined learningsate, on a real robot platform. Learning often requires far more
With WoLF we replace the original learning rate with two trials than is practical to execute in the physical world. We
learning ratesy’ < o to be used when winning or los- believe and demonstrate that the GraWoLF technique is prac-
ing, respectively. One determination of winning and losingtical for the time constraints of real robots. Yet, from a re-
that has been successful is to compare the value of the cugearch standpoint, we want thorough and statistically signifi-
rent policyV™ () to the value of the average policy over time cant evaluation, which requires far more trials than just those
V7(s). So, if V™ (s) > V7(s) then the algorithm is consid- used for learning. We solve this problem by using both a sim-
ered winning, otherwise it is losing. With the policy gradient ulator of our robot team as well as the robots themselves to
technique above, we cannot easily compute the average pahow that the approach is both practical for robots while still
icy. Instead we examine the approximate value, uglig  providing an extensive analysis of the results.

of the current weight vectdt with the average weight vector ~ The second challenge is the problem of evaluating the suc-
over timed. Specifically, we are “winning” if and only if, cess of simultaneous learning. The traditional single-agent
evaluation that shows performance over time converging to

Zm)k(& )Qw, (s,a) > Z”(%(S’ a)Qw,(s,a). (7)  some optimal value is F;10'[ applicable. Multiagent do?na?ns
@ @ have no single optimal value independent of the other agents’
When winning in a particular state, we update the parametersehavior. The optimal value is changing over time as the

for that state using’, otherwisen, . other agents also learn. This is especially true of self-play
experiments where both agents are using an identical learn-
4.3 Our Task ing algorithm, and any performance success by one agent is

Returning to the robot task shown in Figure 1, in order tonecessarily a performance failure for the other.

apply GraWoLF we need to select a policy parameterization. On the other hand we would still want learning robots, even
Specifically we need to find a mapping from the continuousn self-play, to improve their policy over time. In this paper,
space of states and actions to a useful feature vector, i.e., tiur main evaluation compares the performance of the learned
defineg,, for a givens anda. The filtered positions and ve- policy with the the performance of the initial policy before
locities of the two robots form the available state information,learning. The initial policy is a random selection of the avail-
and the available actions are points on the field for navigationable actions, and by design of the available actions is actually
By observing that the radial angle of the attacker with respeca fairly capable policy for both agents. We also use the eval-
to the circle is not relevant to the task we arrive at a sevemation technique of challengers, which was first examined by
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Figure 2: The value of learned policies compared to a randorfrigure 3: The value of learned policies playing their chal-
opponent in simulation. Lines to the right of the bars showlengers in simulation. Lines to the right of the bars show
standard deviations. standard deviations.

Littman [1994]. This technique trains a worst-case opponentto specifically measure the policy’s worst-case performance.
or challenger, for a particular policy to see the generality ofThe better the worst-case performance, the less exploitable
the learned policy. In this paper we present challenger resultsnd more robust the policy is to unknown opponents. We
demonstrating that the learned policies are indeed robust, anghined a challenger against the policies learned after 3000,
that the WoLF variable learning rate plays a critical role in 3500, and 4000 trials, averaging together the results. We used
keeping the learning away from easily exploited policies.  this experiment to investigate the robustness of the learned
. policy and the affect of the WoLF variable learning rate on
5.2 Experiments the GraWoLF algorithm. The left side of the graph shows the
In all of the performance graphs in this section, the y-worst-case performance of learned defender policies, while
axis shows the attacker’s expected discounted reward, whidfie right side shows the worst-case performance for attacker
roughly corresponds to the expected time it takes for the atpolicies. “WOLF” corresponds to the described GraWolLF
tacker to reach the circle. On the right of the graph the rangealgorithm, “Slow” does not use a variable learning rate but
is shown in seconds. All measurements of expected disrather always uses the WoLF’s winning rate, while “Fast” al-
counted reward are gathered empirically over the course ofays uses its losing rate.
1000 trials. All training occurred over 4000 trails, and takes First, notice that the distance between the worst-case per-
approximately 6-7 hours of training time on the robot plat-formance of the defender and the worst-case performance of
form or in simulation. Unless otherwise noted, the trainingthe attacker (the third and fourth column of Table 3, respec-
was always done with a simultaneously learning opponentjvely) is quite small. This demonstrates that the learned poli-
both using GraWoLF. The experiments in simulation were recies are quite close to the equilibrium policy, if one exists.
peated nine times and the averages are shown in the grapfshis also means that the learned policies are robust and diffi-
We first examine the performance of the policies learned ircult to exploit.
simulation, and then examine the performance of learning on Second, notice that the WoLF learned defender policy per-
the robot. forms better against its challenger, i.e., keeps its challenger
Figure 2 shows the results of various learned policies wheto a lower reward, than either of the two learning rates it
playing against an opponent following the random policy,switches between. For the attacker, the learned policy per-
which was the starting point for learning. The middle bar,forms better against its challenger than the fast learning rate,
“Rv. R”, corresponds to the expected value of both playersut is not significantly different than the slow learning rate.
following the random policy. “L v. R” corresponds to the There are a couple of possible reasons for this. One expla-
value of the attacker following the policy learned in self-play nation is due to the initialization of values. Since all values
against a random defender. “R v. L” corresponds to the valuevere intialized to zero for both sides, this amounts to an opti-
of a random attacker against the defender policy learned imistic initialization for the defender, and a pessimistic one for
self-play. the attacker (as all rewards are non-negative for the attacker.)
Notice that, as was desired, learning does improve perforfhis may mean the attacker considers itself winning far more
mance over the starting policy. The learned attacker policyften than the defender, causing the slower learning rate to be
against random does far better than the random attacker pamployed most of the time. There is evidence to this effect
icy against the learned defender. These experiments demowhen examining the percentage of updates thatysersus
strate that GraWoLF improves considerably on its startingy;. During training, the attacker used the slower, winning rate
policy. The next experiment explores how robust the learnedor 92.3% of its updates, while the defender used the winning
policy is and the effect of the WoLF component. rate for only 84.2%. The effect of value initialization on Gra-
Figure 3 shows results of challenger experiments. PoliWoLF is an interesting top to be explored further. Overall,
cies are trained using simultaneous learning. The policy iglthough the results are certainly not as dramatic as the unap-
then fixed and a challenger policy is trained for 4000 trails,proximated result§Bowling and Veloso, 2003aWoLF still
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