
Simultaneous Adversarial Multi-Robot Learning

Michael Bowling and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh PA, 15213-3891

Abstract

Multi-robot learning faces all of the challenges of
robot learning with all of the challenges of mul-
tiagent learning. There has been a great deal of
recent research on multiagent reinforcement learn-
ing in stochastic games, which is the intuitive ex-
tension of MDPs to multiple agents. This recent
work, although general, has only been applied to
small games with at most hundreds of states. On
the other hand robot tasks have continuous, and of-
ten complex, state and action spaces. Robot learn-
ing tasks demand approximation and generaliza-
tion techniques, which have only received exten-
sive attention in single-agent learning. In this paper
we introduce GraWoLF, a general-purpose, scal-
able, multiagent learning algorithm. It combines
gradient-based policy learning techniques with the
WoLF (“Win or Learn Fast”) variable learning rate.
We apply this algorithm to an adversarial multi-
robot task with simultaneous learning. We show re-
sults of learning both in simulation and on the real
robots. These results demonstrate that GraWoLF
can learn successful policies, overcoming the many
challenges in multi-robot learning.

1 Introduction
Multi-robot learning is the challenge of learning to act in
an environment containing other robots. These other robots,
though, have their own goals and may be learning as well.
Other adapting robots make the environment no longer sta-
tionary, violating the Markov property that traditional single-
agent behavior learning relies upon. Multi-robot learning
combines all of these multiagent learning challenges with the
problems of learning in robots, such as continuous state and
action spaces and minimal training data.

A great deal of recent work on multiagent learn-
ing has looked at the problem of learning in stochastic
games[Littman, 1994; Singhet al., 2000; Bowling and
Veloso, 2002a; Greenwald and Hall, 2002]. Stochastic games
are a natural extension of Markov decision processes (MDPs)
to multiple agents and have been well studied in the field of
game theory. The traditional solution concept for the prob-
lem of simultaneously finding optimal policies is that of Nash

equilibria. An equilibrium is simply a policy for all of the
players where each is playing optimally with respect to the
others. This concept is a powerful solution for these games
even in a learning context, since no agent could learn a better
policy when all the agents are playing an equilibrium.

Multiagent learning in stochastic games, thus far, has only
been applied to small games with enumerable state and action
spaces. Robot learning tasks though have continuous state
and action spaces, and typically with more than just a couple
dimensions. Discretizations of this space into an enumerable
state set also do not typically perform well. In addition, data
is considerably more costly to gather, and millions of training
runs to learn policies is not feasible. Typical solutions to this
robot learning problem is to use approximation to make the
learning tractable and generalization for more efficient use of
training experience.

In this paper we introduce a new algorithm, GraWoLF1,
that combines approximation and generalization techniques
with the WoLF multiagent learning technique. We show em-
pirical results of applying this algorithm to a problem of si-
multaneous learning in an adversarial robot task. In Section 2,
we give a brief overview of key concepts from multiagent
learning along with the the formal model of stochastic games.
In Section 3, we describe a particular adversarial robot task
and its challenges for learning. In Section 4, we present the
main components of GraWoLF: policy gradient ascent and
the WoLF variable learning rate. In Section 5, we present
experimental results of applying this algorithm to our adver-
sarial robot task, and then conclude.

2 Multiagent Learning
Multiagent learning has focused on the game theoretic frame-
work of stochastic games. Astochastic gameis a tuple
(n,S,A1...n, T,R1...n), wheren is the number of agents,S is
a set of states,Ai is the set of actions available to agenti (and
A is the joint action spaceA1 × . . . × An), T is a transition
functionS ×A×S → [0, 1], andRi is a reward function for
theith agentS×A → <. This looks very similar to the MDP
framework except we have multiple agents selecting actions
and the next state and rewards depend on the joint action of
the agents. Another important difference is that each agent

1GraWoLF is short for “Gradient-based Win or Learn Fast”, and
the ‘a’ has the same sound as in “gradient”.



has its own separate reward function. The goal for each agent
is to select actions in order to maximize its discounted future
rewards with discount factorγ.

Stochastic games are a very natural extension of MDPs to
multiple agents. They are also an extension of matrix games
to multiple states. Each state in a stochastic game can be
viewed as a matrix game with the payoffs for each joint action
determined by the matricesRi(s, a). After playing the matrix
game and receiving their payoffs the players are transitioned
to another state (or matrix game) determined by their joint
action. We can see that stochastic games then contain both
MDPs and matrix games as subsets of the framework.

Stochastic Policies. Unlike in single-agent settings, deter-
ministic policies in multiagent settings can often be exploited
by the other agents. Consider the children’s game rock-paper-
scissors. If one player were to play any action determinis-
tically, the other player could win every time by selecting
the action that defeats it. This fact requires the considera-
tion of mixed strategies and stochastic policies. A stochastic
policy, π : S → PD(Ai), is a function that maps states to
mixed strategies, which are probability distributions over the
player’s actions. We later show that stochastic policies are
also useful for gradient-based learning techniques.

Nash Equilibria. Even with the concept of stochastic poli-
cies there are still no optimal policies that are independent of
the other players’ policies. We can, though, define a notion of
best-response. A policy is abest-responseto the other play-
ers’ policies if it is optimal given their policies. The major ad-
vancement that has driven much of the development of matrix
games, game theory, and even stochastic games is the notion
of a best-response equilibrium, orNash equilibrium[Nash,
Jr., 1950].

A Nash equilibrium is a collection of strategies for each of
the players such that each player’s strategy is a best-response
to the other players’ strategies. So, no player can do bet-
ter by changing strategies given that the other players also
don’t change strategies. What makes the notion of equilib-
rium compelling is that all matrix games and stochastic games
have such an equilibrium, possibly having multiple equilib-
ria. Zero-sum, two-player games, like the adversarial task
explored in this paper, have a single Nash equilibrium.2

Learning in Stochastic Games. Stochastic games have
been the focus of recent research in the area of reinforcement
learning. There are two different approaches being explored.
The first is that of algorithms that explicitly learn equilibria
through experience, independent of the other players’ policy,
e.g., [Littman, 1994; Greenwald and Hall, 2002]. These al-
gorithms iteratively estimate value functions, and use them
to compute an equilibrium for the game. A second approach
is that of best-response learners, e.g.,[Claus and Boutilier,
1998; Singhet al., 2000; Bowling and Veloso, 2002a]. These
learners explicitly optimize their reward with respect to the

2There can actually be multiple equilibria, but they all have equal
payoffs and are interchangeable.

Figure 1: An adversarial robot task. The top robot is trying to
get inside the circle while the bottom robot is trying to stop
it. The lines show the state and action representation, which
is described in Section 4.3.

other players’ possibly changing policies. This approach, too,
has a strong connection to equilibria. If these algorithms con-
verge when playing each other, then they must do so to an
equilibrium[Bowling and Veloso, 2002a].

Neither of these approaches, though, have been scaled be-
yond games with a few hundred states. Games with a very
large number of states, or games with continuous state spaces,
make state enumeration intractable. Since previous algo-
rithms in their stated form require the enumeration of states
either for policies or value functions, this is a major limita-
tion. In this paper we examine learning in an adversarial robot
task, which can be thought of as a continuous state stochas-
tic game. Specifically, we build on the idea of best-response
learners using gradient techniques[Singhet al., 2000; Bowl-
ing and Veloso, 2002a]. We first describe our robot task and
then describe our algorithm and results.

3 An Adversarial Robot Task
Consider the adversarial robot task shown in Figure 1. The
robot at the top of the figure, the attacker, is trying to reach
the circle in the center of the field, while the robot closer to
the circle, the defender, is trying to prevent this from hap-
pening. If the attacker reaches the circle, it receives a re-
ward of one and the defender receives a reward of negative
one. These are the only rewards in the task. When the at-
tacker reaches the circle or ten seconds elapses, the trial is
over and the robots reset to their initial positions, where the
attacker is a meter from the circle and the defender half-way
between. The robots simultaneously learn in this environment
each seeking to maximize its own discounted future reward.
For all of our experiments the discount factor used was 0.8
for each full second of delay.

The robots themselves are part of the CMDragons robot
soccer team, which competes in the RoboCup small-size
league. There are two details about the robot platform that
are relevant to this learning task. First, the learning algorithm
itself is situated within a large and complex architecture of



existing capability. The team employs a global vision system
mounted over the field. This input is processed by an elab-
orate tracking module that provides accurate positions and
velocities of the robots. These positions comprise the input
state for the learning algorithm. The team also consists of ro-
bust modules for obstacle avoidance and motion control. The
actions for the learning algorithm then involve providing tar-
get points for the obstacle avoidance module. Situating the
learning within the context of this larger architecture focuses
the learning. Rather than having the robot learn to solve well
understood problems like path planning or object tracking,
the learning is directed at the heart of the problem, the multi-
robot interaction.

Second, the system control loop that is partially described
above has inherent, though small, latency. Specifically, after
an observed change in the world 100ms will elapse before the
robot’s response is executed. This latency is overcome for
each robot’s own position and velocity by predicting through
this latency using knowledge of the past, but not yet executed,
actions. Since the actions of the opponent robots are not
known, this prediction is not possible for other robots. La-
tency effectively adds an element of partial observability to
the problem, since the agents do not have the complete state
of the world, and in fact have separate views of this state. No-
tice, that this also adds a tactical element to successful poli-
cies. A robot can “fake” the opponent robot by changing its
direction suddenly, knowing the other robot will not be able
to respond to this change for a full latency period.

This task involves numerous challenges for existing multi-
agent learning techniques. These challenges include continu-
ous state and action spaces, elements of partial observability
due to system latency, and violation of the Markov assump-
tion since many of the system components have memory, e.g.,
the tracking and the obstacle avoidance modules. In fact,
these limitations may even make equilibria cease to exist alto-
gether[Bowling and Veloso, 2002b]. This is a further reason
for exploring best-response learning techniques, which don’t
directly seek to learn an equilibrium. We now present Gra-
WoLF, a best-response learning algorithm that can handle the
challenges of multi-robot learning.

4 GraWoLF
GraWoLF, or Gradient-based WoLF, combines two key ideas
from reinforcement learning: policy gradient learning and the
WoLF variable learning rate. Policy gradient learning is a
technique to handle intractable or continuous state spaces.
WoLF is a multiagent learning technique that encourages
best-response learning algorithms to converge in situations of
simultaneous learning. We briefly describe these techniques
and how they are combined.

4.1 Policy Gradient Ascent
We use the policy gradient technique presented by Sutton and
colleagues [2000]. Specifically, we define a policy as a Gibbs
distribution over a linear combination of features of a candi-
date state and action pair. Letθ be a vector of the policy’s
parameters and letφsa be an identically sized feature vector
for states and actiona, then the Gibbs distribution defines a

stochastic policy according to,

πθ(s, a) =
eθ·φsa∑
b e
θ·φsb

.

Sutton and colleagues’ main result was a convergence proof
for the following policy iteration rule that updates a policy’s
parameters in a Gibbs distribution according to,

θk+1 = θk + δk
∑
s

dπk(s)
∑
a

φsa · πθk(s, a)fwk
(s, a) (1)

fwk
(s, a) is an independent approximation ofQπθk (s, a)

with parametersw, which is the expected value of taking ac-
tion a from states and then following the policyπθk . For
the Gibbs distribution, Sutton and colleagues showed that for
convergence this approximation should have the following
form,

fwk
(s, a) = wk ·

[
φsa −

∑
b

πθk(s, b)φsb

]
. (2)

As they point out, this amounts tofw being an approximation
of the advantage function,Aπ(s, a) = Qπ(s, a) − V π(s),
whereV π(s) is the value of following policyπ from state
s. It is this advantage function that we estimate and use for
gradient ascent.

Using this basic formulation we derive an on-line version
of the learning rule, where the policy’s weights are updated
with each state visited. The summation over states can be re-
moved by updating proportionately to that state’s contribution
to the policy’s overall value. Since we are visiting states on-
policy then we only need to weight later states by the discount
factor to account for their smaller contribution. Ift time has
passed since the trial start, this turns Equation 1 into,

θk+1 = θk + γtδk
∑
a

φsa · πθk(s, a)fwk
(s, a). (3)

Since the whole algorithm is on-line, we do the policy im-
provement step (updatingθ) simultaneously with the value
estimation step (updatingw). We do value estimation using
gradient-descent Sarsa(λ) [Sutton and Barto, 1998] over the
same feature space as the policy. This requires maintaining
an eligibility trace vector,e. The update rule is then, if at
timek the system is in states and takes actiona transitioning
to states′ in time t and then taking actiona′, we update the
trace and the weight vector using,

ek+1 = λγtek + φsa, (4)

wk+1 = wk + ek+1αk

(
r + γtQwk

(s′, a′)
−Qwk

(s, a)

)
, (5)

whereλ is the Sarsa parameter andαk is an appropriately de-
cayed learning rate. The addition of raisingγ to the power
t allows for actions to take differing amounts of time to
execute, as in semi-Markov decision processes[Sutton and
Barto, 1998].

The policy improvement step then uses Equation 3 where
s is the state of the system at timek and the action-value es-
timates from Sarsa,Qwk

, are used to compute the advantage
term. We then get,

fwk
(s, a) = Qwk

(s, a)−
∑
a

πθk(s, a)Qwk
(s, a). (6)



This forms the crux of GraWoLF. What remains is the selec-
tion of the learning rate,δk. This is where the WoLF variable
learning rate is used.

4.2 Win or Learn Fast
WoLF (“Win or Learn Fast”) is a method by Bowling and
Veloso [2002a] for changing the learning rate to encourage
convergence in a multiagent reinforcement learning scenario.
Notice that the policy gradient ascent algorithm above does
not account for a non-stationary environment that arises with
simultaneous learning in stochastic games. All of the other
agents actions are simply assumed to be part of the envi-
ronment and unchanging. WoLF provides a simple way to
account for other agents through adjusting how quickly or
slowly the agent changes its policy.

Since only the rate of learning is changed, algorithms
that are guaranteed to find (locally) optimal policies in non-
stationary environments retain this property even when us-
ing WoLF. In stochastic games with simultaneous learning,
WoLF has both theoretical evidence (limited to two-player,
two-action matrix games), and empirical evidence (experi-
ments in games with enumerated state spaces) that it en-
courages convergence in algorithms that don’t otherwise con-
verge. The intuition for this technique is that a learner should
adapt quickly when it is doing more poorly than expected.
When it is doing better than expected, it should be cautious,
since the other players are likely to change their policy. This
implicitly accounts for other players that are learning, rather
than other techniques that try to explicitly reason about the
others’ action choices.

The WoLF principle naturally lends itself to policy gradi-
ent techniques where there is a well-defined learning rate,αk.
With WoLF we replace the original learning rate with two
learning ratesαwk < αlk to be used when winning or los-
ing, respectively. One determination of winning and losing
that has been successful is to compare the value of the cur-
rent policyV π(s) to the value of the average policy over time
V π̄(s). So, if V π(s) > V π̄(s) then the algorithm is consid-
ered winning, otherwise it is losing. With the policy gradient
technique above, we cannot easily compute the average pol-
icy. Instead we examine the approximate value, usingQw,
of the current weight vectorθ with the average weight vector
over timeθ̄. Specifically, we are “winning” if and only if,∑

a

πθk(s, a)Qwk
(s, a) >

∑
a

πθ̄k(s, a)Qwk
(s, a). (7)

When winning in a particular state, we update the parameters
for that state usingαwk , otherwiseαlk.

4.3 Our Task
Returning to the robot task shown in Figure 1, in order to
apply GraWoLF we need to select a policy parameterization.
Specifically we need to find a mapping from the continuous
space of states and actions to a useful feature vector, i.e., to
defineφsa for a givens anda. The filtered positions and ve-
locities of the two robots form the available state information,
and the available actions are points on the field for navigation.
By observing that the radial angle of the attacker with respect
to the circle is not relevant to the task we arrive at a seven

dimensional input space. These seven dimensions are shown
by the white overlaid lines in Figure 1.

We chose to use tile coding[Sutton and Barto, 1998], also
known as CMACS, to construct our feature vector. Tile cod-
ing uses a number of large offset tilings to allow for both a
fine discretization and large amount of generalization. We
use 16 tiles whose size was 800mm in distance dimensions
and 1600mm/s in velocity dimensions. We simplify the ac-
tion space by requiring the attacker to select its navigation
point along a perpendicular line through the circle’s center.
This is shown by the dark overlaid line in Figure 1. This line,
whose length is three times the distance of the attacker to the
circle, is then discretized into seven points evenly distributed.
The defender uses the same points for its actions but then nav-
igates to the point that bisects the line from the attacker to the
selected action point. The robot’s action is also included in
the tiling as an eighth dimension with a tile size for that di-
mension of the entire line, so actions are distinguishable but
there is also generalization. Agents select actions every tenth
of a second, or after every three frames, unless the feature
vector has not changed over that time. This keeps the robots
from oscillating too much during the initial parts of learning.

5 Results
Before presenting results on applying GraWoLF to this prob-
lem we first consider some issues related to evaluation.

5.1 Evaluation
Evaluation of multi-robot learning algorithms present a num-
ber of challenges. The first is the problem of data gathering
on a real robot platform. Learning often requires far more
trials than is practical to execute in the physical world. We
believe and demonstrate that the GraWoLF technique is prac-
tical for the time constraints of real robots. Yet, from a re-
search standpoint, we want thorough and statistically signifi-
cant evaluation, which requires far more trials than just those
used for learning. We solve this problem by using both a sim-
ulator of our robot team as well as the robots themselves to
show that the approach is both practical for robots while still
providing an extensive analysis of the results.

The second challenge is the problem of evaluating the suc-
cess of simultaneous learning. The traditional single-agent
evaluation that shows performance over time converging to
some optimal value is not applicable. Multiagent domains
have no single optimal value independent of the other agents’
behavior. The optimal value is changing over time as the
other agents also learn. This is especially true of self-play
experiments where both agents are using an identical learn-
ing algorithm, and any performance success by one agent is
necessarily a performance failure for the other.

On the other hand we would still want learning robots, even
in self-play, to improve their policy over time. In this paper,
our main evaluation compares the performance of the learned
policy with the the performance of the initial policy before
learning. The initial policy is a random selection of the avail-
able actions, and by design of the available actions is actually
a fairly capable policy for both agents. We also use the eval-
uation technique of challengers, which was first examined by



0.2

0.25

0.3

0.35

0.4

0.45

0.5

L v. R R v. R R v. L
7.2s

3.1s

A
tta

ck
er

’s
 E

xp
ec

te
d 

R
ew

ar
d

Figure 2: The value of learned policies compared to a random
opponent in simulation. Lines to the right of the bars show
standard deviations.

Littman [1994]. This technique trains a worst-case opponent,
or challenger, for a particular policy to see the generality of
the learned policy. In this paper we present challenger results
demonstrating that the learned policies are indeed robust, and
that the WoLF variable learning rate plays a critical role in
keeping the learning away from easily exploited policies.

5.2 Experiments
In all of the performance graphs in this section, the y-
axis shows the attacker’s expected discounted reward, which
roughly corresponds to the expected time it takes for the at-
tacker to reach the circle. On the right of the graph the range
is shown in seconds. All measurements of expected dis-
counted reward are gathered empirically over the course of
1000 trials. All training occurred over 4000 trails, and takes
approximately 6-7 hours of training time on the robot plat-
form or in simulation. Unless otherwise noted, the training
was always done with a simultaneously learning opponent,
both using GraWoLF. The experiments in simulation were re-
peated nine times and the averages are shown in the graphs.
We first examine the performance of the policies learned in
simulation, and then examine the performance of learning on
the robot.

Figure 2 shows the results of various learned policies when
playing against an opponent following the random policy,
which was the starting point for learning. The middle bar,
“R v. R”, corresponds to the expected value of both players
following the random policy. “L v. R” corresponds to the
value of the attacker following the policy learned in self-play
against a random defender. “R v. L” corresponds to the value
of a random attacker against the defender policy learned in
self-play.

Notice that, as was desired, learning does improve perfor-
mance over the starting policy. The learned attacker policy
against random does far better than the random attacker pol-
icy against the learned defender. These experiments demon-
strate that GraWoLF improves considerably on its starting
policy. The next experiment explores how robust the learned
policy is and the effect of the WoLF component.

Figure 3 shows results of challenger experiments. Poli-
cies are trained using simultaneous learning. The policy is
then fixed and a challenger policy is trained for 4000 trails,

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fast Slow WoLF WoLF Slow Fast
7.2s

3.1s

A
tta

ck
er

’s
 E

xp
ec

te
d 

R
ew

ar
d

Defender Attacker

Figure 3: The value of learned policies playing their chal-
lengers in simulation. Lines to the right of the bars show
standard deviations.

to specifically measure the policy’s worst-case performance.
The better the worst-case performance, the less exploitable
and more robust the policy is to unknown opponents. We
trained a challenger against the policies learned after 3000,
3500, and 4000 trials, averaging together the results. We used
this experiment to investigate the robustness of the learned
policy and the affect of the WoLF variable learning rate on
the GraWoLF algorithm. The left side of the graph shows the
worst-case performance of learned defender policies, while
the right side shows the worst-case performance for attacker
policies. “WoLF” corresponds to the described GraWoLF
algorithm, “Slow” does not use a variable learning rate but
rather always uses the WoLF’s winning rate, while “Fast” al-
ways uses its losing rate.

First, notice that the distance between the worst-case per-
formance of the defender and the worst-case performance of
the attacker (the third and fourth column of Table 3, respec-
tively) is quite small. This demonstrates that the learned poli-
cies are quite close to the equilibrium policy, if one exists.
This also means that the learned policies are robust and diffi-
cult to exploit.

Second, notice that the WoLF learned defender policy per-
forms better against its challenger, i.e., keeps its challenger
to a lower reward, than either of the two learning rates it
switches between. For the attacker, the learned policy per-
forms better against its challenger than the fast learning rate,
but is not significantly different than the slow learning rate.
There are a couple of possible reasons for this. One expla-
nation is due to the initialization of values. Since all values
were intialized to zero for both sides, this amounts to an opti-
mistic initialization for the defender, and a pessimistic one for
the attacker (as all rewards are non-negative for the attacker.)
This may mean the attacker considers itself winning far more
often than the defender, causing the slower learning rate to be
employed most of the time. There is evidence to this effect
when examining the percentage of updates that useδw versus
δl. During training, the attacker used the slower, winning rate
for 92.3% of its updates, while the defender used the winning
rate for only 84.2%. The effect of value initialization on Gra-
WoLF is an interesting top to be explored further. Overall,
although the results are certainly not as dramatic as the unap-
proximated results[Bowling and Veloso, 2002a], WoLF still



0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

LL v. R R v. R R v. LL
4.1s

2.7s

A
tta

ck
er

’s
 E

xp
ec

te
d 

R
ew

ar
d

Figure 4: The value of learned policies playing the random
policy on the real robots. Training was done with the first
half of the trials in simulation and the last half on the robots.

seems to be providing a converging effect.
Finally, we examine results of using GraWoLF on the real

robots. We took policies that were trained for 2000 trials in
simulation and then did an additional 2000 trials of training
on the robots. We evaluated the resulting policies against the
random policy as we did with the simulator results in Fig-
ure 2. These results are shown in Figure 4

In the real robots the attacker is nearly impossible to keep
from reaching the circle. The defender can at best only slow
down its progress, and this is even true for a random attacker
policy. This can be seen in Figure 4 by the much higher
rewards as compared to the simulator results. Despite this,
these results are qualitatively identical to the results produced
in simulation. Simultaneous learning improves the perfor-
mance for both the attacker and defender over their initial
policies.

Finally, as an adversarial environment we would expect
good policies to be stochastic in nature. This is true of all
of the learned policies in both simulation and on the robots.
For example, the most probable action in any given state has
probability on average around 40% in the attacker’s learned
policy, and 70% in the defender’s. In some states, though,
the learned policies are nearly deterministic. So, the learned
policies are indeed stochastic to avoid exploitation, while still
learning optimal actions in states that don’t depend on the
other agent’s behavior.

6 Conclusion

We have introduced, GraWoLF, a general-purpose multiagent
learning algorithm capable of learning robot tasks in multi-
robot, and even adversarial, environments. We showed re-
sults of this algorithm learning in one particular adversarial
robot task, both in simulation and from actual robot experi-
ence. These results both demonstrated the effectiveness of
the policy gradient learner, and the importance of the WoLF
variable learning rate. It should be noted that the use of Sut-
ton and colleagues’ particular policy gradient formulation is
not critical. It would be interesting to combine WoLF with
other policy gradient techniques, such as[Williams, 1992;
Baxter and Bartlett, 2000].

Acknowledgements
This research was sponsored by Grants F30602-00-2-0549
and DABT63-99-1-0013. The content of this publication
does not necessarily reflect the position of the funding agen-
cies and no official endorsement should be inferred. The au-
thors also thank Brett Browning and James Bruce for the de-
velopment of the CMDragons’02 robots used in this work.

References
[Baxter and Bartlett, 2000] Johnathan Baxter and Peter L.

Bartlett. Reinforcement learning in POMDP’s via direct
gradient ascent. InProceedings of the Seventeenth Inter-
national Conference on Machine Learning, pages 41–48,
Stanford University, June 2000. Morgan Kaufman.

[Bowling and Veloso, 2002a] Michael Bowling and
Manuela Veloso. Multiagent learning using a vari-
able learning rate.Artificial Intelligence, 136:215–250,
2002.

[Bowling and Veloso, 2002b] Michael Bowling and
Manuela M. Veloso. Existence of multiagent equilibria
with limited agents. Technical report CMU-CS-02-
104, Computer Science Department, Carnegie Mellon
University, 2002.

[Claus and Boutilier, 1998] Caroline Claus and Craig
Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. InProceedings of the
Fifteenth National Conference on Artificial Intelligence,
Menlo Park, CA, 1998. AAAI Press.

[Greenwald and Hall, 2002] Amy Greenwald and Keith
Hall. Correlated Q-learning. InProceedings of the AAAI
Spring Symposium Workshop on Collaborative Learning
Agents, 2002.

[Littman, 1994] Michael L. Littman. Markov games as a
framework for multi-agent reinforcement learning. InPro-
ceedings of the Eleventh International Conference on Ma-
chine Learning, pages 157–163. Morgan Kaufman, 1994.

[Nash, Jr., 1950] John F. Nash, Jr. Equilibrium points inn-
person games.PNAS, 36:48–49, 1950.

[Singhet al., 2000] Satinder Singh, Michael Kearns, and
Yishay Mansour. Nash convergence of gradient dynam-
ics in general-sum games. InProceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence, pages
541–548. Morgan Kaufman, 2000.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning. MIT Press, 1998.

[Suttonet al., 2000] Richard S. Sutton, David McAllester,
Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approx-
imation. In Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

[Williams, 1992] R. Williams. Simple statistical gradi-
ent following algorithms for connectionisht reinforcement
learning.Machine Learning, 8:229–256, 1992.


