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Abstract

Intuitively, learning should be easier when
the data points lie on a low-dimensional sub-
manifold of the input space. Recently there
has been a growing interest in algorithms
that aim to exploit such geometrical prop-
erties of the data. Oftentimes these algo-
rithms require estimating the dimension of
the manifold first. In this paper we propose
an algorithm for dimension estimation and
study its finite-sample behaviour. The algo-
rithm estimates the dimension locally around
the data points using nearest neighbor tech-
niques and then combines these local esti-
mates. We show that the rate of conver-
gence of the resulting estimate is indepen-
dent of the dimension of the input space and
hence the algorithm is “manifold-adaptive”.
Thus, when the manifold supporting the data
is low dimensional, the algorithm can be ex-
ponentially more efficient than its counter-
parts that are not exploiting this property.
Our computer experiments confirm the ob-
tained theoretical results.

1. Introduction

The curse of dimensionality in machine learning refers
to the tendency of learning algorithms working in high-
dimensional spaces to use resources (time, space, sam-
ples) that scale exponentially with the dimensionality
of the space. Since most practical problems involve
high-dimensional spaces, it is of uttermost importance
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to identify algorithms that are capable of avoiding this
exponential blow-up, exploiting when additional regu-
larity is present in the data.

One such regularity that has attracted much attention
lately is when the samples lie in a low-dimensional sub-
manifold of the possibly high-dimensional input space.
Consider for example the case when the data points
are images taken of a scene or object, from different
angles. Although the images may contain millions of
pixels, they all lie on a manifold of low dimensionality,
such as 3. Another example is when the input data is
enriched by adding a huge number of feature compo-
nents computed from the original input components in
the hope that these additional features will help some
learning algorithm (generalized linear models or the
“kernel trick” implement this idea).

Manifold learning research aims at finding algorithms
that require less data (i.e., are more data efficient)
when the data happens to be supported on a low-
dimensional submanifold of the input-space. We call a
learning algorithm manifold-adaptive when its sample-
complexity depends on the intrinsic dimension of the
manifold only.1 A classical problem in pattern recog-
nition is the estimation of the dimension of the data
manifold. Dimension estimation is interesting on its
own, but it is also very useful as the estimate can be
fed into manifold-aware supervised learning algorithms
that need to know the dimension to work efficiently
(e.g., Hein 2006; Gine and Koltchinskii 2007).

In this paper we propose an algorithm for estimat-
ing the unknown dimension of a manifold from sam-
ples and prove that it is manifold-adaptive. The new
algorithm belongs to the family of nearest-neighbor

1Of course, the sample-complexity may and will typi-
cally depend on the properties of the manifold and thus
the embedding.
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methods. Such methods have been considered since
the late 70s. Pettis et al. (1979) suggested to aver-
age distances to k-nearest neighbors for various values
of k and use the obtained values to find the dimen-
sion using an iterative method.2 Another more recent
method is due to Levina and Bickel (2005) who sug-
gested an algorithm based on a Poisson approxima-
tion to the process obtained by counting the number
of neighbors of a point in its neighborhood. In a some-
what heuristic manner they argued for the asymptotic
consistency of this method. Grassberger and Procac-
cia (1983) suggested to estimate the dimension based
on the so-called correlation dimension, while Hein and
Audibert (2005) suggested a method based on the as-
ymptotics of a smoothed version of the correlation di-
mension estimate. Despite the large number of works
and long history, to our best knowledge no previous
rigorous theoretical work has been done on the finite-
sample behavior of dimension-estimation algorithms,
let alone their manifold adaptivity.

2. Algorithm

The core component of our algorithm estimates the di-
mensionality of the manifold in a small neighborhood
of a selected point. This point is then varied and re-
sults of the local estimates are combined to give the
final estimate.

The local estimate is constructed as follows: Collect
the observed data points into Dn = [X1, . . . , Xn]. We
shall assume that Xi is an i.i.d. sample that comes
from a distribution supported on the manifold M . De-
fine η(x, r) by

P (Xi ∈ B(x, r)) = η(x, r)rd, (1)

or

ln(P (Xi ∈ B(x, r))) = ln(η(x, r)) + d ln(r), (2)

where B(x, r) ⊂ RD is a ball around the point x ∈ M
in the Euclidean space RD. Our main assumption in
the paper will be that in a small neighborhood of 0
the function η(x, ·) is slowly varying (the assumptions
on η will be made precise later). This is obviously
satisfied in the commonly studied simple case when the
distribution of the data on the manifold is uniform and
the manifold satisfies standard regularity assumption
such as those considered by Hein et al. (2006).

2Due to the lack of space, we cannot attempt to give a
full review of existing work on dimension estimation. The
interested reader may consult the papers of Kegl (2002)
and Hein and Audibert (2005) which contain many further
pointers.

There are two ways of using Equation (2) for estimat-
ing the dimension d. Both rely on the observation that
this equation is linear in d. One approach is to fix a
radius and count the number of data points within
the ball B(x, r), while the other approach is to cal-
culate the radius of the smallest x-centered ball that
encloses some fixed number of points. Either way, one
ends up with an estimate of both ln(P (Xi ∈ B(x, r)))
and ln(r). Taking multiple measurements, we may get
an estimate of d by fitting a line through these mea-
surements, by treating η as a constant. Because η
cannot be considered constant when r is large (due to
the uneven sampling distribution or the curvature of
the manifold), one should ideally work at small scales
(small r). On the other hand, when r is too small
then the measurements’ variance will be high. A good
estimator must thus find a good balance between the
bias and the variance, making the estimation of the
intrinsic dimension a non-trivial problem.

In this paper we study an algorithm in which we fix
the “scale” by fixing the number of neighbors, k: the
dimension is estimated from the distance to the kth
nearest neighbor. In the other approach, i.e., when a
scale h = hn is selected, the typical requirement is that
hd

nn →∞, or hn = Ω(n−1/d). Given that d is unknown
this suggests to choose hn = Cn−1/D. This choice,
however, is too conservative and would not lead to a
dimension adaptive procedure.3 On the other hand,
for the consistency of k-nearest neighbor procedures
one typically requires only kn/n → 0 and kn → ∞
(these conditions are independent of d). Therefore we
prefer nearest-neighbor based techniques for this task.

In order to be more specific about the method,
let Xk(x) be the reordering of the data such that
||X(k)(x) − x|| ≤ ||Xk+1(x) − x|| holds for k =
1, 2, . . . , n−1 (ties are broken randomly). Here ‖·‖ de-
notes the `2-norm of RD. Hence, X(1)(x) is the nearest
neighbor of x in Dn, X(2) is the 2nd nearest neighbor,
etc. Let r̂(k)(x) = ‖Xk(x)− x‖ be the distance to the
kth nearest neighbor of x. In our theoretical analysis,
for the sake of proofs simplicity, we use the follow-
ing simple estimation method: Take k > 2. Denoting
η(x, r) ≈ η0, from (2) we have

ln(k/n) ≈ ln(η0) + d ln(r̂(k)(x)),
ln(k/(2n)) ≈ ln(η0) + d ln(r̂(dk/2e)(x)),

since if n is big, P
(
X0 ∈ B(x, r̂(k)(x))

)
should be close

to k/n. Reordering the above equations for d, we get

d̂(x) = ln 2
ln(r̂(k)(x)/r̂(dk/2e)(x))

. (3)

3Of course, other options, such as using splitting or
cross-validation to select h are also possible. We leave it
for future work to study such algorithms.
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When a center is selected from data, this point is
naturally removed when calculating the point’s near-
est neighbors. With a slight abuse of notation, the
estimate when selecting center Xi is also denoted by
d̂(Xi).

When used at a single random data point, the variance
of the estimate will be high and due to k ¿ n the
available data is used in a highly inefficient manner.
One idea is to compute the estimate at all data points
and combine the results. The simplest method is to
use averaging:

d̂avg =
[Pn

i=1(d̂(Xi)∧D)

n

]
. (4)

Here a ∧ b = min(a, b) and [x] denotes the rounded
value of x (recall that the estimated dimension is a
positive integer number smaller than or equal to D).
Another option is to let the estimates vote:

d̂vote = arg max
d′∈N+

∑n
i=1 I{d̂(Xi)=d′}. (5)

Here N+ stands for the set of positive integers.

3. Main results

The purpose of this section is to show that the pro-
cedure described in the previous section is manifold-
adaptive. Let ηmin = infx∈M η(x, 0). In what follows
we will assume that the following holds:

Assumption 1. (1) The constant ηmin is positive. (2)
For any point x ∈ M , η(x, r) as a function of r is
continuous and differentiable at any r > 0 and right-
differentiable at r = 0. (3) There exists a positive
number B′, such that for any (x, r) ∈ M × [0, r0),
| ∂
∂r η(x, r)| ≤ B′η(x, r).4(4) There exist r0 > 0 and

B > 0 such that η satisfies |η(x, r) − η(x, 0)| ≤
Bη(x, 0)r, where (x, r) ∈ M × [0, r0) is arbitrary.

Since ηmin > 0 the manifold has to be compact. Thus
the first condition on the partial derivative of η im-
plies the second relative Lipschitzness condition when
η satisfies some additional smoothness assumptions.
Assumption 1 is not very restrictive: All it says is that
the sampling distribution should be well-behaving in
the sense that it should not change too fast. This
assumption is satisfied e.g. if η is uniform on M
and if M is sufficiently regular. Define η(x, r) =
min{η(x, r′) | 0 ≤ r′ ≤ r}. From the above assump-
tion, it is easy to see that η(x, r) ≥ η(x, 0)(1 − Br)
holds for any 0 ≤ r < r0 < 1 and x ∈ M .

The following theorem is the main result of the paper:
4For r = 0 we take the right-sided derivative of η here.

Theorem 1. Consider the estimate d̂(X1). Then un-
der Assumption 1 provided that n ≥ ck2d, with proba-
bility at least 1− δ

|d̂(X1)− d| ≤ E [C(X1)] d

(
B

(
k

n

) 1
d

+

√
ln(4/δ)

k

)
,

(6)
where C(x) = C ′((ηmin)−

1
d ∧ η(x, 0)−

1
d ( 1

2 + 2
1
d )) + C ′′

and where C ′ and C ′′ are universal constants that do
not depend on d, D, k, n, δ and the distribution of
X1.

As promised, the result shows that the proposed
method is manifold-adaptive: the estimate’s conver-
gence rate depends only on the intrinsic dimension of
the manifold and not the dimension of the embedding
space RD.

The first term of (6) bounds the bias of the estimate.
By making k small, the bias can be held small. How-
ever, a small k makes the second term, which bounds
the variance, large. The choice of k that optimizes the
bound is k = n2/(2+d), giving rise to the rate n−1/(2+d).
Since d is not available, we may e.g. choose k = n1/2

giving the rate O(n−
1
2d∧ 1

4 ).

Since d is discrete valued when the upper bound of the
left-hand-side of (6) becomes smaller than 1/2, then
by rounding the estimate, d̂(X1), we get d. This gives
rise to the following corollary:

Corollary 2. Assume that the conditions of Theo-
rem 1 are satisfied and k/n < (1/2)d. Then

P
(
[d̂(X1)] 6= d

)
≤ 4 exp

(
−k

(
1
2 −

(
k
n

) 1
d

)2
)

. (7)

Although we see that the probability of error decays
exponentially fast, the result is only valid (just like the
previous result) when the number of samples is large
enough. This condition, however, seems inevitable
since the algorithm uses estimates of the volume of
balls of radii r and r/2 with small r. In d dimensions,
if we have less than (1/r)d uniform random points in a
unit cube centered around the origo then the expected
number of points in the ball B(0, r) is smaller than
one. Thus we need at least (2/r)d > 2d points if we
want to have at least one point inside the ball of radius
r/2.

Now, let us consider the global estimates d̂avg and
d̂vote. Using McDiarmid’s version of the Hoeffding-
Azuma inequality (McDiarmid, 1989; Hoeffding, 1963;
Azuma, 1967) and a counting argument relying on the
covering of the manifold by cones (essentially adopting
the argument of Stone (1977) to manifolds) and un-
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der very weak assumptions on the manifold5 both es-
timates can be shown to enjoy exponentially fast rates.
In particular, for some universal constants c, c′, c′′ > 0,
we have

P
(
d̂vote 6= d

)
≤ e

− c′n
(cd k)2 , (8)

P
(
d̂avg 6= d

)
≤ e

− c′′n
(Dcd k)2 . (9)

From these bounds we can conclude that voting should
be preferred since in the case of the averaging bound
the rate of convergence depends on D (though only
in a very mild, polynomial way). However, our ex-
perimental results seems to suggest that the estimate
for the averaging method is probably too conservative
as it tends to produce better results than voting, at
least for the particular dataset and choice of parame-
ters that we considered.

Due to the lack of space the proof of this statement is
deferred to the full version of this paper, but the proof
of Theorem 1 which is the key to this proof as well is
given in the next section.

4. Proofs

Theorem 1 is proven in a series of lemmas. First, let
us remark that due to the independence of samples,
it suffices to show the result for any deterministically
selected point x ∈ M . Hence, in what follows we will
consider this case. For the sake of brevity we shall sup-
press the dependence on x in the rest of this section.

Let p = k/n. By the triangle inequality,

|d− d̂| ≤ |d− d(p)|+ |d(p)− d̂|. (10)

Here d(p) is defined by

d(p) =
ln 2

ln(rp/rp/2)
. (11)

By (2), if η(x, rp) = η(x, rp/2) were hold true then
d(p) = d would hold. Hence, the source of the error
|d − d(p)| is the change in η in the neighborhood of
x. By Assumption 1 on η, we can make this error
controllable.

The following statement follows by elementary consid-
erations (the proofs of these lemmas are given in the
appendix):

Lemma 1. |d − d(p)| ≤ CBdrp provided that rp <
(0.2/B) ∧ r0. Here C ≤ 8 is a universal constant.

5Bounded curvatures and that the manifold is not self-
approaching are the main assumptions.

It is easy to see that rp ≤ (ηmin)−1/d(k/n)1/d. When
the density is non-uniform this estimate might be very
conservative. We prefer a bound that depends on the
properties of the density in the vicinity of x. Using
the observation stated after Assumption 1, we get the
following result:
Lemma 2. Assume that Brp < (0.5 ∧ r0). Then

rp ≤ ((ηmin)−
1
d ∧ η(x, 0)−

1
d ( 1

2 + 2
1
d ))

(
k

n

) 1
d

.

Chaining the inequalities of Lemma 1 and Lemma 2
we get that |d − d(p)| ≤ CdBrp ≤ C((ηmin)−

1
d ∧

η(x, 0)−
1
d ( 1

2 + 2
1
d ))Bd

(
k
n

) 1
d .

The second term of (10), |d(p) − d̂|, is bounded by
relating it to the relative errors of estimating rp by
r̂(k) (and rp/2 by r̂(dk/2e)).
Lemma 3. If d(p)′ is defined by d(p)′ =
ln(2)/ ln(r′p/r′p/2) for some positive quantities r′p and
r′p/2 then for

α = max

(∣∣∣∣
r′p
rp
− 1

∣∣∣∣ ,

∣∣∣∣∣
r′p/2

rp/2
− 1

∣∣∣∣∣

)
,

|d(p)− d(p)′| ≤ Cd2α (12)

provided that α ≤ c/d and rp < (0.2/B) ∧ r0, where c
is a fixed universal constant.

Again, the proof of this lemma uses elementary analy-
sis. By this lemma, in order to get a bound on
|d(p)− d̂|, we need to analyze the relative error of es-
timating rp by r̂(k). We get the following lemma by
using Assumption 1.
Lemma 4. Assume that rp < (4B′)−1 ∧ r0 and α ≤
1/(4(d + 1)). Then

P
(
r̂(k) ≤ rp(1− α)

)
≤ exp(−C1kα2(d− 1

4 )2)(13)

P
(
r̂(k) ≥ rp(1 + α)

)
≤ exp(−C2kα2(d− 1

4 )2)(14)

where C1 = 3
8 (1− d−2

4(d+1) )(1− 3
16(d+1) ), C2 = 3e−1/4

8 (1−
1

8(d+1) )(1− 1
16(d+1)(d−1/4) )

2.

The proof of this lemma relies on Bernstein’s inequal-
ity. According to these bounds, with probability at
least 1− δ,

max
{∣∣∣∣

r̂(k)

rp
− 1

∣∣∣∣ ,

∣∣∣∣
r̂(dk/2e)

rp/2
− 1

∣∣∣∣
}
≤ C3

1
d

√
ln(4/δ)

k

with a suitable universal constant C3. Hence,

|d− d̂| ≤ C(x)d

(
B

(
k

n

) 1
d

+

√
ln(4/δ)

k

)
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holds with probability at least 1−δ, which proves The-
orem 1.

5. Experimental results

The purpose of this section is to provide some experi-
mental evidence on the performance of our algorithm.
We investigated the influence of the following factors:
(i) number of samples (n), (ii) the manifold’s dimen-
sion (d) (iii) the embedding space’s dimensionality
(D), (iv) the number of centers used when combining
the local estimates (m),6 (v) the number of neighbors
(k) (vi) noise level. Due to the lack of space here we
only present results for (i)–(iii). The other results will
be given in the longer version of this paper, here we
remark only that according to our experience the al-
gorithm’s performance degrades gracefully when noise,
not respecting the manifold is added to the data. Noise
is the Achilles heel of manifold-aware algorithms as
it changes the support of the sampling distribution.
We leave it for future work to study the behaviour of
manifold-aware algorithms in the presence of noise.

The default setting of the parameters are m = n/2 and
k = [2 ln n]. These parameter settings were used in all
the experiments.7 Except for the real-world dataset,
we performed the measurements by repeating the cal-
culations 100 times, for 100 different randomizations of
the datasets considered. We report average errors and
the percentages when a correct estimate was obtained.

The datasets used were essentially identical to those
used by Hein and Audibert (2005), i.e., they in-
clude some standard datasets such as spheres of var-
ious dimensionality and some high-curvature datasets
for which dimension estimation is quite challenging.
In the case of shperes the data points are sampled
uniformly from a d-dimensional sphere Sd embed-
ded in Rd+1. The sinusoid dataset is a one di-
mensional oscillating sinusoid on the circle in R3.
The data points come from the manifold M =
{(sin(u), cos(u), 1

10 sin(10u)) |u ∈ [0, 2π)}, where the
samples are obtained by drawing random points uni-
formly at random in the interval [0, 2π). The 10-
Möbius strip is a two dimensional submanifold in
R3, created by twisting a two dimensional rectan-

6In the theoretical analysis we assumed that m = n (see
Equations (4),(5)). However, one can also select datapoints
participating in the computation in a random fashion (by
sampling data points uniformly with replacement). The
hope is that an equivalently good estimate can be obtained
by less work.

7Note that according to the theory developed this choice
of k is inferior to e.g. k = n1/2. However, k = O(ln n)
yields much less computation and was therefore preferred
in the experiments.
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Figure 1. Average absolute error of the dimension estimate
for different sample sizes for S4 and S8. Note the loga-
rithmic scales. The straight lines show lines fitted to the
measured curves.

gle 10 times. Data points are obtained by sampling
points (U, V ) uniformly on [−1, 1]× [0, 2π) and return-
ing x1(U, V ) = (1 + U

2 cos(5V ))cos(V ), x2(U, V ) =
(1 + U

2 cos(5V )) sin(V ), and x3(U, V ) = U
2 sin(5V ).

We used two other datasets: “Swiss roll” and the
ISOMAP Face datset. The Swiss roll is a two di-
mensional manifold embedded in R3 Levina and Bickel
(2005). ISOMAP Face consists of 698 64× 64 images
(256 gray levels) of a face sculpture Tenenbaum et al.
(2000). For this dataset we obtained an estimate of
four when using d̂avg, while we got an estimate of 3
when using d̂vote. Earlier results by others suggest
that the intrinsic dimensionality is 3.

Results for the different artificial datasets when the
number of data points (n) is varied are given Table 1.
As expected, the number of samples required for an ac-
curate estimate increases with the intrinsic dimension
of the manifold. We can conclude that (at least for the
parameter settings considered) the averaging method
performs better than the voting method. In particu-
lar, voting seems to have troubles when the number of
datapoints is small or the intrinsic dimension is higher.
Therefore in what follows we consider only the aver-
aging method. Overall the performance seems compa-
rable to those reported by Hein and Audibert (2005).

Figure 1 shows the average absolute error measured as
the number of samples for S4 and S8. It turns out that
the error behave roughly as O(n−c/d) with c = 2.4.

One crucial property of our bounds is that they do
not depend (explicitly) on the dimension of the em-
bedding space RD. In order to test this we picked the
10-Möbius dataset and added additional dimensions
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Table 1. Percentage of correct dimension estimates for different sample sizes. The first values in a cell (not in parentheses)
is for the averaging method, while those in parentheses are for the voting method.

Data set n=50 n=100 n=500 n=1000 n=5000

S1 98 (99) 100 (100) 100 (100) 100 (100) 100 (100)
S3 75 (19) 95 (20) 100 (15) 100 (19) 100 (62)
S5 33 (5) 50 (10) 100 (9) 98 (2) 100 (0)
S7 18 (2) 17 (3) 57 (1) 54 (1) 100 (0)

Sinusoid 92 (98) 100 (100) 100 (100) 100 (100) 100 (100)
10-Möbius 69 (47) 13 (74) 100 (98) 100 (99) 100 (100)
Swiss roll 62 (71) 49 (91) 88 (96) 100 (100 100 (100)
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Figure 2. The effect of extrinsic dimension on the mean ab-
solute dimension estimation error for 10-Möbius problem.
For more information see the text.

(“features”) to it by using two functions, φ1 and φ2.8

The results for the original manifold and M1, M2 are
shown in Figure 2. We see that the behavior of the
error-curves is almost identical in all the three cases.10

This figure reinforces us in that, as predicted by the
theory, the embedding dimension has essentially no
effect on the quality of estimates.

6. Conclusions

In this paper, we introduced an algorithm for estimat-
ing the intrinsic dimension of a manifold, and analyzed
its finite-sample convergence properties. We showed

8In particular, we let φ1 : R3 → R6 defined by
φ1(x) = (x, sin(x)), and φ2 : R3 → R12 defined by
φ2(x) = (x, sin(x), x2, x3).9 Clearly, Mj = {φj(x) |x ∈ M}
has the same dimensionality as M (j = 1, 2), but the ex-
trinsic dimensionality of the data points, X ′

i = φ1(Xi),
X ′′

i = φ2(Xi) is increased.
10The differences in the case of the points (X ′′

i ) can prob-
ably be explained by the additional curvature introduced
by the non-linear functions.

that the method is manifold-adaptive: the convergence
behavior of the method is determined by the dimension
of the manifold, and not the dimension of the embed-
ding space. In addition to the theoretical analysis, we
examined our method on several test problems. It was
shown that the performance of the method is compara-
ble to other works. As for future work, it would be in-
teresting to prove manifold-adaptivity results for other
learning problems, such as regression or classification.
Another interesting open question is if manifold learn-
ing can succeed at all in the presence of noise.
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A. Proof of Lemma 1

We will need the following result that we state without
a proof :

Proposition 5. If x < 1 then 2x ≤ ln((1 + x)/(1 −
x)) ≤ 2x

(1−x)(1+x) .

We need to prove the following: Let p > 0 and assume
that rp ≤ 0.2/B. Then for d(p) = ln(2)/ ln(rp/rp/2),
|d− d(p)| ≤ CdBrp, where C ≤ 8.

Proof. Let r1 = rp, r2 = rp/2 and η1 = η(x, rp), η2 =
η(x, rp/2). Note that d = (ln(2)+ln(η1/η2))/ ln(r1/r2).
Hence |d − d(p)| = ln(η1/η2)/ ln(r1/r2) and thus we
plan to upper bound the numerator and lower bound
the denominator.

Let η0 = η(x, 0). By Assumption 1, η1/η2 ≥ η0(1 −
Br1)/(η0(1 + Br2)) ≥ (1−Br1)/(1 + Br1). Similarly,
η1/η2 ≤ (1 + Br1)/(1 − Br1). Since by assumption
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Br1 ≤ 0.2, taking logarithms and using the upper
bound in Proposition 5 we get

| ln(η1/η2)| ≤ 2Br1

(1−Br1)(1 + Br1)
. (15)

Now, using the identities p = η1r
d
1 , p/2 = η2r

d
2 we get

(r1/r2)d = 2 η2/η1 ≥ 2(1 − Br1)/(1 + Br1). Taking
logarithms and using the lower bound in Proposition 5
we get d ln(r1/r2) ≥ ln 2− 2Br1/((1−Br1)(1+Br1)).
Combining the inequalities obtained gives |d− d(p)| ≤
2dBr1/((1−Br1)(1 + Br1) ln 2− 2Br1). Using the as-
sumption r1 = rp ≤ 0.2/B allows us to lower bound
the denominator here by a constant, yielding the final
result.

B. Proof of Lemma 2

Proof. Since p = k/n = η(x, rp)rd
p, rp =

(η(x, rp))−
1
d (k/n)

1
d ≤ (η(x, rp))−

1
d (k/n)

1
d ≤

(η(x, 0)(1 − Brp))−
1
d (k/n)

1
d , where we have

used that Brp < 1. Using the elementary in-
equality (1 − x)−1/d ≤ 1 + 21+ 1

d x which holds
for 0 ≤ x ≤ 0.5 and assuming that Brp ≤ 0.5
we get rp ≤ (k/n)

1
d η(x, 0)−

1
d (1 + 21+ 1

d )Brp ≤
(k/n)

1
d η(x, 0)−

1
d (1 + 21+ 1

d )/2. Also, from rp =
(η(x, rp))−

1
d (k/n)

1
d we get rp ≤ (ηmin)−

1
d (k/n)

1
d .

Combining this with the previous inequality for rp

gives the result.

C. Proof of Lemma 3

Let α = max
(∣∣∣ r′p

rp
− 1

∣∣∣ ,
∣∣∣ r′p/2

rp/2
− 1

∣∣∣
)
. The lemma states

that |d(p) − d(p)′| ≤ Cd2α provided that rp ≤ 0.2/B
and α < 0.5.

Proof. Let e(p) = 1/d(p), e(p)′ = 1/d(p)′. Let ε =
|d(p) − d(p)′|, γ = |e(p) − e(p)′|. Then ε = |d(p) −
d(p)′| = γ

e(p) e(p)′ = d(p)d(p)′ γ ≤ d(p)(d(p) + ε)γ.
Ordering this for ε, provided that γd(p) < 1 we get
that ε ≤ γd(p)2/(1 − γd(p)). Since by Lemma 1,
d(p) ≤ d + CdBrp, assuming that dγ(1 + Brp) < 1
we may further bound ε by

ε ≤ γd2 (1 + CBrp)2

1− γd(1 + CBrp)
. (16)

Hence it suffices to show that γ ≤ Cα since then for
α sufficiently small the denominator can be bounded
from below with a positive constant and the whole
expression will be bounded by O(d2α) as promised.

By the definition of e(p) and e(p)′, e(p)′ − e(p) =

1/ ln(2) ln(( r′p
rp

)/(
r′p/2

rp/2
)). By the definition of α, r′p

rp
≤

1 + α and
r′p/2

rp/2
≥ 1 − α. Hence, since by assumption

α < 1, e(p)′ − e(p) = 1/ ln(2) ln((1 + α)/(1 − α)).
Using Proposition 5, we thus get e(p)′ − e(p) =
2/ ln(2) α/((1 + α)(1− α). Since (1 + α)(1− α) is de-
creasing in α, we may upper bound the right-hand side
by Cα with an appropriate positive constant C, thus
finishing the proof.

D. Proof of Lemma 4

Introduce λ(x, r) = P (X1 ∈ B(x, r)). Since x is fixed,
in what follows for the sake of brevity we will drop x
from the arguments of λ. Similarly, we drop x from
η(x, r). We need the following properties of λ:
Proposition 6. Let r > 0, 0 ≤ ε < r, 0 ≤ α < 1.
The following inequalities hold for λ:

λ(r)− λ(r − ε) ≥ η(r)(1−B′ε)(r − ε)d−1(d−B′r)ε,
(17)

λ(r + ε)− λ(r) ≥ η(r)(1−B′ε)rd−1(d−B′(r + ε))ε,
(18)

λ(r(1− α)) ≥ λ(r)(1− α(1 + B′αr)(d + B′r)),
(19)

λ(r − ε) ≤ η(r)(1 + B′ε)(r − ε)d, (20)
λ(r + ε) ≤ η(r)(1 + B′ε)(r + ε)d. (21)

Proof. Note that (18) follows immediately from (17).
Inequalities (20),(21) follow directly from λ(r) =
η(r)rd and Assumption 1. Hence, it remains to
prove (17) and (19). Let us start with (17).

Since η is differentiable, λ(r) = η(r)rd is differentiable,
too. Further, λ′(r) = η′(r)rd + η(r)drd−1 and hence
using Assumption 1, η(r)rd−1(d − B′r) ≤ λ′(r) ≤
η(r)rd−1(d + B′r).

Let 0 < a, b, v = a∧ b, u = a∨ b. Since by assumption
λ is differentiable in (v, u) and continuous on [v, u], by
the Mean-Value Theorem, λ(a) − λ(b) = λ′(ξ)(a − b)
where ξ is some number in (v, u). Using the bound
derived for λ′, with the choice a = r, b = r − ε we get
λ(r)− λ(r− ε) = λ′(ξ)ε ≥ η(ξ)ξd−1(d−B′ξ) for some
ξ ∈ (r − ε, r). Using η(ξ) ≥ η(r)(1−B′ε) which holds
by Assumption 1, we get λ(r) − λ(r − ε) ≥ η(r)(1 −
B′ε)(r − ε)d−1(d−B′r), which proves (17).

Let us show (19). Let ε = αr. By Taylor’s theorem
there exists ξ ∈ (r − ε, r), such that λ(r − ε) = λ(r)−
λ′(ξ)ε. Hence, λ(r− ε) ≥ λ(r)− η(ξ)ξd−1(d + B′ξ)ε ≥
λ(r)− η(r)(1 + B′ε)rd−1(d + B′r)αr = λ(r)(1−α(1 +
B′αr)(d + B′r)), where we have used the bound on λ′

and Assumption 1.

Now, let us prove Lemma 4.
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Proof. Let r′p < rp be some positive number. Then

P
(
r̂(k) ≤ r′p

)
= P

(
n∑

i=1

I{Xi∈B(x,r′p)} ≥ k

)

= P
(

1
n

∑n
i=1 I{Xi∈B(x,r′p)} − λ(r′p) ≥ k/n− λ(r′p)

)

≤ exp
(−n

2 F (λ(rp), λ(r′p))
)
, (22)

where F (λ1, λ2) = (λ1−λ2)2/(λ2(1−λ2)+ 1
3 (λ1−λ2)).

The last inequality in (22) follows from Bernstein’s
inequality thanks to k/n−λ(r′p) = p−λ(r′p) = λ(rp)−
λ(r′p) > 0 and Var

[
I{X1∈B(x,r)}

]
= λ(r)(1 − λ(r)).

Similarly, if r′p > rp then

P
(
r̂(k) ≥ r′p

)
≤ exp

(
−n

2
F (λ(r′p), λ(rp))

)
. (23)

Choose r′p = rp(1 − α). Then (22) gives an upper
bound on P

(
r̂(k) ≤ rp(1− α)

)
. We further bound this

by lower bounding the numerator of F (λ(rp), λ(r′p))
and upper bounding its denominator. For the
lower bound we use (17) to get λ(rp) − λ(r′p) ≥
η(rp)(1−B′αrp)rd−1

p (1−α)d−1(d−B′rp)rpα = α(1−
α)d−1rpdη(rp)(1 − B′αrp)(d − B′rp). The first term
in the denominator is upper bounded by λ(r′p) (since
1 − λ(r′p) ≤ 1). We now show that the second term
can be bounded from above by λ(r′p) thanks to the
assumptions α ≤ 1/(4(d + 1)) and B′rp ≤ 1. Indeed,
by (19) of Proposition 6, λ(rp(1−α)) ≥ λ(rp)(1−α(1+
B′αrp)(d + B′rp)) ≥ 1/2λ(rp), where the last inequal-
ity follows since (1 + B′αrp)(d + B′rp) ≤ 2(d + 1).
Hence, the denominator can be upper bounded by
4/3λ(r′p). Now using (20), this can be further upper
bounded by 4/3η(rp)(1+B′rpα)(rp(1−α))d. Combin-
ing these bounds gives

n

2
F (λ(rp), λ(r′p)) ≥

3n
8

α2(1−α)2d−2(rp)2dη2(rp)(1−B′αrp)2(d−B′rp)2

η(rp)(1+B′rpα)(rp(1−α))d

= 3n
8

α2(1−α)d−2(rp)dη(rp)(1−B′αrp)2(d−B′rp)2

(1+B′rpα)

≥ 3k
8 α2(1− α)d−2(1− 3B′αrp)(d−B′rp)2

≥ 3k
8 α2(1− (d− 2)α)(1− 3B′αrp)(d−B′rp)2

≥ 3k
8 α2(1− (d− 2)α)(1− 3

16(d+1) )(d− 1
4 )2

where to get the first inequality we used (1− x)/(1 +
x) ≥ 1 − 2x which holds for x > 0, (1 − x)(1 − 2x) ≥
(1 − 3x), and η(rp)rd

p = p = k/n, which holds thanks
to the definition of rp. In the last inequality we used
the assumption B′rp < 1/4 and α < 1/(4(d+1)). This
finishes the proof of the bound of (13).

For bounding P
(
r̂(k) ≥ rp(1 + α)

)
we start with (23).

Again, we lower bound the numerator. This time,

we use (18) to get λ(rp(1 + α)) − λ(rp) ≥ η(rp)(1 −
B′rpα)rd

p(d−B′(rp(1+α)))α. The denominator of (23)
is upper bounded by 4/3λ(rp(1 + α)) ≤ 4/3η(rp)(1 +
B′rpα)(rp(1+α))d ≤ 4/3η(rp)(1+B′rpα)rd

pe1/4, which
follows by (21) and since (1 + α)d ≤ (1 + 1/(4(d +
1)))4(d+1)× d

4(d+1) ≤ e1/(4+1/d) ≤ e1/4. Hence, the ex-
ponent of (23), n/2F (λ(r′p), λ(rp)), is bounded from
below by

3n

8
(η(rp)(1−B′rpα)rd

p(d−B′(rp(1 + α)))α)2

η(rp)(1 + B′rpα)rd
p

≥ 3ne−1/4

8

α2η(rp)rd
p(1−B′rpα)(d−B′(rp(1+α)))2

(1+B′rpα)

≥ 3ke−1/4

8 α2(1− 1
8(d+1) )(d− 1

4 − 1
16(d+1) ))

2,

where we again used (1− x)/(1 + x) ≥ 1− 2x, k/n =
η(rp)rd

p, B′rp ≤ 1/4, α ≤ 1/(4(d + 1)). This finishes
the proof of (14).
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