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Abstract

A state estimation problem is formulated for a partially
observed input-state-output (1-S-O) automaton and the con-
cept of a dynamical (default) logic observer is introduced. A
simple illustrative example is then presented in which a clas-
sical dynamical observer and a dynamical logic observer are
constructed to solve the observation problem for a partially
observed DFA.
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1. INTRODUCTION

Artificial Intelligence (Al) and Systems and Control Theory
(SCT) have evolved using utterly distinct mathematical meth-
ods: on the one hand significant parts of Al are based upon
mathematical logic, and on the other SCT is founded upon the
mathematics of controlled input-output or input-state-output
dynamical systems (stochastic or deterministic). Furthermore,
questions of semantics (i.e. the determination of interpreta-
tions. or models, for the formulas of a logical or a formal sys-
tem) play a role in Al, and in particular in the theory of Knowl-
edge Representation (KR), see [Rosenchein, 1985], while such
issues play no visible role in the conventional mathematical
framework used in SCT.

Despite this apparently vast gulf between the current meth-
odology and foundational issues of Al and SCT. the objectives
of both subjects, described in the broadest terms. are remark-
ably similar, namely, the effective use of information to reason
about, and thence to control, a given svstem or environment.

The purpose of this paper is to show that Al and SCT
have an intersection (or product!) containing a set of problems

- that possess the conceptual features of both subjects. Pioneer-
ing steps in this direction. have been taken in .Ramadge and
Wonham, 1984, [Rosenchein, 1985, Rosenchein and Kaebling,
1987/, Wonham, 1985 and |Wonham and Ramadge. 1984..
Here, however, we take a different approach from those au-
thors. To be specific, we shall take simple class of dynamical
systems represented by partially observed automata and then
pose the state estimation problem in terms of (i) the prob-
lem of constructing a classical dynamical system (CDS) which
generates a sequence of state estimates, and (ii) the problem
of the construction of a dynamical logic system (DLS) which
generates a sequence of propositions that correctly describe
properties of the state of the automaton. In particular, we
are interested in those cases where the classical dynamical ob-
server system estimates converge to the correct values of the
system state and the dynamical logic system statements con-
verge (in an appropriate sense) to true characterizations of the
system state. When such convergent observer systems exist
we shall call the automaton observable or logically observable
respectively. (We shall make this statement technically precise
later in the paper.) The development of this theory requires
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inter alia the definition of dynamical logic systems, and this is
perhaps one of the main contributions of the paper. The final
section of this paper contains an illustrative example applying
these ideas to an extremely simple, but non-trivial, partially
observed automaton.

A further remark concerning motivation is appropriate.
Apart from its interest as an intrinsic property of dynamical
systems. observability is important in systems and control the-
ory because of its role in the analysis of regulators (or super-
visors). Generally speaking, output-to-input or state feedback
regulators may be designed to steer the state of a partially ob-
served system to a required value if and only if the system is
both controllable and observable. (For a presentation of these
ideas in the context of linear systems, see Kalman, Falb and
Arbib, 1969! [Caines, 1988!). It is this that motivates us to
examine logic observability and logic controllability (i.e. con-
trollability by use of dynamical logic systems) for automata in
order that the problem of what we shall term logic regulations
of automata may be addressed and analysed.

2. THE DYNAMICAL OBSERVER PROBLEM FOR
FINITE AUTOMATA

In this paper, an automaton is taken to mean a determin-
istic state output finite automaton. The dynamical observers
for the finite automata discussed in this section are themselves
modeled by finite automata.

Definition 2.1 An input-state-output (I-S-O) (finite) automa-
ton is a quintuple M = (X,U.Y,®,n) where

X is a (finite) set of states,

U is a (finite) set of inputs,

Yisa &ﬁniteg set of outputs,

®: X x U — X is a transition function,

n:X — Y is a output function. -

As notations used in this paper, we sometimes may write
®(z,u) as dy(z), ul as the sequence u,u,, U2 *** Un, Where
u, denotes the input at the instance j € Z_, and the same for
T

Yy, -

The dynamical evolution of an input-state-output automa-
ton M = (X.U.®,n,Y) can be displayed by taking U* to
be the set of all finite sequence of inputs and by extend-
ing ® : X »U/ — X to be ® : X x U* — X, where for
vion ¢ Lo.vul e UT and Vz € X,® has the property that the
following equation is satisfied:

Blz.ul) = 9(B(z.u;).uly,)

Because 1 is not necessarily a one-to-one map, an I-§-O ‘au-
tomaton will often be referred to as a partially observed au-
tomaton.

The input-state-output automaton set-up described
above includes. as a special case, that of any conventional de-
terministic finite automaton A with partial transition function



6. (In the standard case where no outputs are defined for A
we set ¥ = ¢, to obtain the appropriate restriction of the
general 1-8-O automaton set-up). Whenever § is defined, set
®(z,u) = 6(z,u), and whenever it is not adjoin to M a state
z (indicating jam) and define @ to be such that o(z,u) = z.
Further postulate ®(zy,u) = zj for all u ¢ U (i.e. the system
can never get out of a jam). Finally the conventional automata
theoretic notion of an event is recovered by defining the event
map e : X x U — U|J{es}, taking values in the event set
U U{es}, to be such that any transition of the system M of
the form z;.; = ®(zk,ug), With T,y # 2, is mapped into
an event e, = e(zj,u)) A ug. Further, the distinguished event
e and the map e are assumed to satisfy

e, = ej, whenever ®(zj,ur) = zJ

In other words, whenever the system jams the event sequence
is terminated with an (unbounded) sequence ej,e€;.

This has the formal language interpretation that an
event sequence, or a word. which corresponds to a sequence
of state tramsitions ending in the jammed state generates a
word €1,€0,... ... €fs €] €J cunnn- which is declared to be un-
grammatical, i.e. does not lie in the generated language L(A).

The 1-S-O automaton can also obviously cover the situa-
tion where the conventional automata states are absorbed into
a terminal state corresponding to the termination of a gram-
matical or admissible string in the generated language L(A).

The observer problem for an automaton M = (X.U.Y.
®,7n) is the problem of determining the initial or current state
of the automaton from observations on its inputs and outpus
over a finite time period.

Let an initial state for a input-state-output automaton M
be denoted z] and let an input-state-output sequence of length
N starting with the initial state z] be given by

@V o) =@l Y ()i < i< M)
=(ulV1, {0z}, U1 i< N,
{n(@(z}, 0y )1 S i< NY)
Definition 2.2 An N-consistent state sequence with respect to
the output sequence y{w = {n(z);1 <1 < M}, denoted

11? j M, is any state sequence I{V that satisfies

Tpop = Bz}, uf) 1 <k<N -1
nlzk) =y 1 <k M

]

In other words. an N-consistent state sequence with respect

to the output sequence yM is one that both satisfies the system
dynamics up to N and gives the observed output sequence up
to M.

Definition 2.3 A state sequence estimate with respect to an

output sequence yfu of a state sequence of length N denoted
{::{V TM is defined to be the union of all N-consistent state
sequences with respect to y{u . In symbols:
iy a UZI{VTM AU (=M a1+ U ET)
(2.1)
where (lI{VTM)l denotes the 7, compoBent vector of any one

of the N-consistent state sequences z{\' M- -

Definition 2.4. A state estimate (at M) with respect to y{v.
denoted {z3}y is the set of My, elements of a state sequence
estimate with respect to y7 , i.e.

(v = PualIm) = Ul mm (2.2)
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where Py is the projection operator and Pys(Zy,---.Zp—1,

ZM 2115 ) = Zy and Z; C X o

Two particularly important special cases are: (i) the tni-
tigl\statc estimate with respect to y{v and {z{‘r}\N defined by
{1}y A P]({z{VTN), and (i) the current state estimate with
respect to y{v, defined by {;;}N A PN({z{V?N).

Example we can illustrate these definitions with the state-
output automaton given in Fig -2.1-: Let z] = r1 and so let

th_e automaton generate the following state-output sequences
with initial segments

N=1

(21 = =1,1)
N=2

(21 = 21,23 = 28), (1,0))
N =3

((z} = z1,z3 = 28,23 = x1),(1,0,1))
In these cases we have

N=1 R
{zih = ({=1,22}),
and hence .
{21}y = {=1, 22}
N=2 R
{z}}2 = ({=1},{=3}),
and hence

{21}, = {21} and {z3}, = {z3};
and finally N =3
5 {3} = ({z1},{z3}.{z1})
@3 = {21}, {z}5 = {3} and
{z3}3 = {z1}.

We can formulate the following definitions:
Definition 2.5. An input-state-output automaton M = (X,U,Y,

®,7) is said to be initial state observable iff vz* € X,Vu €
U* 3K ¢Z...stVN > K

{TT-I\}I\Y =P, ({z]}y) = «* .

Definition 2.6. An input-state-output automaton M = (X,U)Y,
®,n) is said to be current state observable iff Yz ¢ X,vu ¢
U*AK € Z;.st. YN > K

{z‘N}N=¢(z*,u{\Ll)71:§v C

Clearly, as illustrated by the following state-output au-
tomaton, that the initial state observability implies current
state observability but not vice versa.
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Definition 2.7. Two states z'l,:r'l' ¢ X of an automaton M =
(X,U,Y,®,7) are said to be (observability) equivalent, denoted
by = ) iff vu e U*,n(®(z),v)) = 7(®(z],u)) O

’fhe equivalence relation =, over the state space X of an
automaton M = (X,U,Y,®,n) induces a partition over the
equivalence classes of X/ =, which permits us to define another
property for automata.
Definition 2.8. An automaton M = (X,U,®,n,Y) is said to
be. in reduced form iff

vz e X,|zl=, = {z}. o

Clearly an I-S-O automaton cannot be initial state observ-
able if there exist observability equivalent states. Further, a
reduced state automaton can be seen to be initial state ob-
servable.

We can now give some useful formulae for the initial and
current state estimate sets. The first is a simple set intersection
expression whereas the second has the important predictor-
corrector form of many recursive algorithms in systems and
control theory. In fact, in this case, we should perhaps refer
to the recursion as a predictor-refiner formula, since no error-
correction in the usual sense of the words take place.
Proposition 2.1 Consider any I-S-O automaton, then for all ini-
tial states 1 € X and any input u € U* the following equations
hold:

N
{adn= o, 07 (@ e (=) (29)
k=1 1

N
iy = o na ' (@ 4-1(=1))  (24)
k=1 & !

and the predictor-refiner recursion formula

@y = ey N1 (07 (@ v () (25)
1

fenibves = Suy (vt Vn (@ (=) (26)

where {zx}o A X. and 7} (A) for A C X is defined to be the
u
1

subset of X' such that Vz € kal(A),(I)uk(z) C A -~
ul 1 ~

All the proofs of the Propositions, Corollarys and Theo-
rems that appear in this paper will be omitted for the limita-
tion of the space.

Corollary 2.1 For any I-S-O automaton M = (X.U.®.9.Y),
M is initial state observable iff V; ¢ X,Vu ¢ U",ZK ¢
Z.,5tYN>K

X
e = 5L (7 (0(@uy e (a1)))
k=1 "1
= b1 8 (7 (r(@ v (1))
1
= {z1} (2.11)

and M is current state observable iff Vz; ¢ X,Vu ¢ U*,3K ¢
Z..54YN > K

N
(zntn = () O N-1(n7 (1@ -1 (21)))
k=1 1 1
= Guy_y ({en )y ()17 (@, (21))
= Qu{\l—](ll) (212)

[l

Corollary 2.2 For any S-O automaton M = (X,Y,®,7n) the
following equations hold:

N
(N eV (7 (n(@F (21)))))
k=1

N
= " @ F U (@5 (1))
k=1

N
= eV * 7 (@ (=) (2.13)
k=1

C

Corollary 2.3 For any S-O automaton M = (X,Y,®,n) the
following equation holds:

N
o( () eV * (e ()
k=1
N
= e(@" *(n ! (n(@*1(2))))) (2.14)
k=1

Proposition 2.2 An I-S-O automaton M = (X,U.Y,®,9), M is
initial state observable if and only if the following implication
holds: Vz{,z} € X,Yu e U*,3K ¢ L..st. YN 2 K

n(®(c),uk)) = n(®(z],uf)) 1 <k <N

= 1} =1 (2.15)

and M is current state observable if and only if Vzi, 2] ¢ X,vu ¢
U*,3K € Z_such that YN > K

— oz} ul ) = oz, uf ) (2.16)

Definition 2.9. Given an I-S-O automaton M = (X.U.Y, 9,
n), a (classical) dynamical observer system of M is an automa-

ton M = (X,0,8,7.7)st. 0 =V,¥ = Xand7: X — X.

u]

M takes the output space Y of M as its input space and
it prints out its “estimate” of the state of the automaton M.

Definition 2.10. A dynamical observer system M is said to be
convergent in finite time if Vz1 ¢ X,3K ¢ Z+,s.t. YN > K and
vud ¢ U* we have ﬁ(@(zl,i{v)) = @(Il,u{v).

-

3. DYNAMICAL LOGIC SYSTEMS

To reason about and hence to control a dynamical sys-
tem. i.e. an input-(state)-output system, we need to choose
a suitable formal language or a suitable logic which must be
able to support such concepts as system input and output, sys-
tem state. feedback, time instant and those concepts associated
with the dynamical evolution of these quantities. Moreover,
this reasoning must be carried out in (discrete} real or system
time. In contrast to the notion of system time. we shall take
(discrete) logic time to be the time that is measured between
two system time clock instants and which is such that each



inferential step taken in (or by) the logical deduction process
consumes one unit of logic time.

In the following, we give definitions of the concepts of time
invariant and time varying logics, which will be the first step
towards a definition of a dynamical logic system.

We take L to denote a set of well formed formulas (wffs),
¢ to be a set of axioms in L and we assume the set of inference
rules be fixed. Intuitively, we may say a logic is (system) time
invariant if the set of axioms is fixed, and hence the set of
theorems is time independent. Actually, this condition is only
sufficient not necessary. We may further explore a necessary
and sufficient condition for this definition by considering the
equivalence classes over the set of all possible axioms as follows.

Let F be a relation and ¢ - w denote the wif w is derivable
from the set of axioms ¢. Th(¢) = {w :w € L,¢ - w} is the set
of all theorems (or the range of the deductive closure operator)
derivable in L under ¢. Clearly. this deductive closure operator
Th:2L — 2L gives rise to an equivalence relation =y, over the
power set oL of L. This relation =y can be defined for ¢, ¢
2L by ¢; =qy ¢ if and only if Th(¢;) = Th(gp). Furthermore,
the equivalence class of ¢ induced by =7}, will be denoted by
i¢iTh. Hence we can define a time invariant logic as follows:

Definition 3.1. A logic L is said to be time tnvariant w.r.t. sys-
tem time iff the set of axioms ¢ of L is invariant w.r.t. system
time up to the equivalence class [¢|y,. L will be said to be a

time varying logic if otherwise. _

Most classical and contemporary logics are time invariant
since they all have a fixed set of axioms and a fixed set of infer-
ence rules. Examples are given by the logics used in computer
science for reasoning about program behaviors (i.e. the cor-
rectness of a sequential or concurrent program) such as Petri-
Net, Communicating Sequential Processes. Even the so called
Temporal Logic [Manna and Pnueli, 1981} cannot, as it stands,
deal with a situation where new axioms are accepted at each
system (i.e. real) time clock instant. Moreover, temporal logic
is a modal logic wherein a statement {or a theorem) is not
derivable at a given instant will not be derivable at all system
time clock instants and hence no error correction is permitted
or possible.

In contrast to this, in Al the Jogics that are used by (some)
knowledge based systems can update their rules of inference,
and facts in the data base, upon receiving signals from oper-
ators or from some learning schemes. These are actually the
time-varying logics or dynamical logics (not dynamic logics )
in the sense we discussed in this paper. Within Al these issues
are being addressed formally by the construction of formal sys-
tems such as default logic see ‘Reiter, 1980 , or non-monotonic
logics in general, see [McDermott and Doyle, 1980] and [Moore,
1985, which are intended to be formulations of common sense
reasoning or reasoning under uncertainty. (K. Konolige [Kono-
lige. 1987; proved that a default logic is equivalent to an au-
toepistemic logic, one type of non-monotonic logic introduced
by R.C. Moore see [Moore, 1985}).

Dynanical Logic Systems

The general idea of a dynamical logic system (DLS), is
inspired by that of a dynamical system, that is to say a non-
anticipative mapping ¢ from the input (time) function space U
to the output (time) function space Y. Before we present this
idea in detail, let us further consider the relationship between
the system time and logic time in a general logic system.

As we introduced earlier, the logic time instant will take
place between each system time clock period, and each logic
time unit will correspond to each logic inferential step in the
logic deduction process. Hence corresponding to three possible
assumptions on the deduction machine, we have three different
models on the relations between the system time and logic
time, which are discussed as follows:

229

(i). t = 1. — The deduction machine is extremely slow, it can
take only one inferential step during each system time period.

(ii). t = 2™ for some M ¢ Z.. — This implies that the de-
duction machine is relatively fast, there exists a rather large
number of logic time units between two system time clock in-
stants. but still may not be able to reach the deductive closure.
This assumption is interesting in the sense it represents most
practical systems.

(iii). ¢ = co. — This is an ideal case, for which the deductive
closure can always be achieved.

Depending upon the different deduction machines used by
a DLS. we get different system mappings §.

Suppose we are working on a resource limited agent, namely,
there exists an upper bound on the number of logic time units
that can be taken between any succeeding system time clock
instants. In this case, we can write out the mapping £ as PTh,
a partial theorem operator, which stands for the set of theo-
rems derived during each system time clock period. Let PTh;
denote the partial set of theorems, i.e. the subset of the deduc-
tive closure derived by L¢ up to time ¢. Notice that, this set
of theorems may not even include the set of new axioms that
are received as the current input, i.e. u; may not lie in PTh; .
Clearly, we have the following equation:

PTheyy = PTh(PThy, uets) 1)

We leave the evaluation of the PTh operator to be unfixed
in order to model different real world situations.

In an extreme case, if we assume we are dealing with an
ideal agent i.e. the deduction machine can take infinitely many
logical inferential steps during each system timé period, then
we can identify the system mapping £ as the deductive closure
operator Th, as mentioned before.

f€(u)le+1 A Th(u§™)
¥ Theeq
= Th(uh U {u+1})
= Th(“6=“'t+1)
= Th(Th(ub),us21); since Th(uh) = Th(Th(up))
= Th(Thy, 1) (2)

K we use z; to replace PTh; in (1) or Thy in (2') then a
state equation formula is obtained from:

T+l = PTH(zt,qu)
or 2"

2441 = Th(zs, upsq)

Hence PTH; or Th; play a role of a state in a DLS. We
can further introduce a concept of a logic state of a dynamical
logic system as follows.

Definition 3.2.— A logic state (minimal logic state) 1, at the
(system) time ¢. of a dynamical logic system L is a (minimal)
set of theorems of L, which, together with the input function
U(#') will uniquely determine the output function ¥ (') of the

system for v’ > t. a

As for a classical dynamical system, we may obtain a
logic state for an input-output dynamical logic system by con-
structing the Nerode equivalence classes (see |Caines, 1988,
Kalman. Falb. Arbib, 1969)) over the set of all possible in-
puts. i.e. the input space. Therefor. any input-output DLS
will give rise to an input-state-output DLS.

So far the output function ¥ (t) in our DLS has been for-
mulated as the set of all theorems derived up to t. i.e. PTh; or
Th; depends on whether the deduction machine used by DLS
is an ideal one or not. In another words. the output is taken



to be the state value of the DLS, but in general, we may define
the output function Y (t) to be a subset of PTh; or Thy. We
can formalize this idea by the following concepts.

We denote Q(t) to be a set of wffs in L at the time ¢, they
may represent a set of objects we are interested in. A base level
query map of Q(t) to a DLS at the time ¢ is defined to be a
time dependent set Y (t) such that Y(¢) = {w e L : w ¢ Thy
and w € Q(t)}, (or Y(t) = {w ¢ L : w e PTh; and w € Q(t)}).
i.e. the intersection of Th; (or PTh,) with Q(t). The key point
here is that a base level query map is a matching process not
a deduction. process. Hence we have the following definition on
the output function of a DLS.

Definition 3.3.—An output function Y (t) of a DLS L¢ is a base
level query map of Q(t) to L. 0

Definition 3.4.— A dynamical logic system {DLS) consists of a
septuple (FR(L), LA, DyA. DaA, Linf, Dinf, Q), indexed by
time, given by a set of formation rules FR(L), axioms (LA.
DyA, DaA) and rules of inference (Linf, Dinf) such that the
logic state recursion is given by (2) and the output map is given

by the query map Q. O
Namely, a DLS consists of a sequence of the following ax-

iomatic scheme:
(1.) Formation Rules
(2.) Axioms

(2.1) Logical Axioms

EZAZ; Dynamical (Environment) Axioms

2.3) Data Axioms
(3 )( Inference Rules
1
(3.2) Dynamical Inference Rules
) Query map

The formulation of the concept of a dynamical logic system
(DLS) led to the construction of Input/Output spaces, defined
as a set of time functions on the power set of a set of wifs of
a time varying logic L. and a mapping from the input space U
to the output space Y. So for a given time varying logic L, we
have the following definition:
Definition 3.5.—An input-output dynamical logic system L¢ of
the time varying logic L¢ is a triple Lg = (U, Y, ) where

1. ) Logical Inference Rules
3

(4

UA{U:2- — 2L} = input space
yA{Y:2. — 2L} = output space
€ uly = (ug.ug, - ur) — ¥p = (Yo, 1, ve)

which can also be written as £, u§ - yj. -

From the input-output system point of view, we have the
following schema. :

dynamical logic system
L.=(,Y,8)
gLY.g

U(t)—— — Y(t)

Fig.-3.1-

Where the input function U(t) denotes a sequence of data
axioms or dynamical axioms received by L¢ up to the time ¢
and the output function Y (t) will represent a base level query
of some Q(t) to Lg.

We use i£()}¢ to denote the evaluation of a mapping ¢ at
the time t. A shift operator is therefore defined by [S7(£())}: =
"£(-);¢ . which represents the evaluation of the mapping ¢ is
shifted backward 7 units of time clock instants. Here we can
define the notion of a time invariant input-output dynamical
logic system as:
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Definition 3.6.— An (input-output) dynamical logic system L
is said to be time tnvariant iff

EUED]e = [S-7(&(SH U a)
We observe that by the construction of a DLS, it yields a

time invariant (input-output) dynamical logic system. Further,
if we define P; be a (nonanticipative) truncation operator, by

_fU@E) ft>1
(RUC) = {¢ otherwise

then we can define a nonanticipative (input-output) dynamical
logic system L by:

Definition 3.7.— An (input-output) dynamical logic system L
is said to be nonanticipative iff for VU,.Us e U PU; = PUs
implies P,(£(U1)) = P(£(U2)) O

By Data Axioms 2.3 we see that any DLS is necessarily
nonanticipative. For a general discussion of dynamical systems
see 'Kalman, Falb and Arbib, 1969} and [Caines, 1988].

In the rest of this paper we will formulate a state obser-
vation problem for a partially observed DFA in terms of the
dynamical logic system.

DYNAMICAL (DEFAULT) LOGIC OBSERVERS FOR
FINITE AUTOMATA

The state estimation problem of a finite automaton will
give rise to-a dynamical logic system, in the sense as we dis-
cussed above. Where the new observations about the system
will introduce new data axioms for the DLS and the partial
observation will lead us to adopt a st table set of defaults. No-
tice that. If we restrict the dynamical inference rules in the
axiomatic system of a DLS to a set of defaults and keep the
dynamical axioms in the same system be constant, then the
DLS will become a sequence of default logic systems.

The concepts that associate with a dynamical logic ob-
server (DLO) for a partially observed 1-S-O automaton will be
given by the following definitions.

Definition 3.8.— A dynamical logic observer-DLO for a par-
tially observed I-S-O automaton, denoted as M, is a DLS for
which the inputs are observations on the output sequences gen-
erated by M. the axioms of DLO contain the state transitions
of M. and the outputs are base level queries on the state of M.

O

The dynamical default logic observer (DDLO) will be a
DLO where the default rules are adopted in the inference rules.
Definition 3.9.—A DLO for a partially observed automaton M
is said to be convergent to M in finite time. if 3k ¢ T, s.t.
Yt > k the axioms of the DLO at the time instant k. denoted
as ¢, and the sequence of statements or predicates ST'(z;.t)
for t > k which describe the state trajectory z(tj = z; of M

satisfies the relation ¢, - ST (z;.t). -
The finite time convergent property simply savs that after
a finite period of time interval the theorems derived by the
DLO will give true characterizations of the properties of M.
Definition 3.10.— A partially observed automaton M is said
1o be logically observable if there exists a finite time convergent

DLO for M. -

A DLO works as a state predictor which receives the out-
puts from a DFA at each time clock instant and then (instanta-
neously) print out its reasoning result about state information
of a given DFA. The reasoning process is a logical deduction
process which maps its inputs to a ‘optimal” estimate accord-
ing to the best of its ‘knowledge. A complete example will
be given in section 5 and comparisons will be made between a
classical dynamical observer (CDO) and a dynamical default
logic observer (DDLO).



4. MAIN THEOREM AND A BOUND ON THE
OBSERVER AUTOMATON

In this section, we present our main theorem which con-
nects the notion of observability of an I-S-O automaton with
the existence of a convergent classical dynamical observer and
the existence of a convergent dynamical logic observer. Then we
describe a general design procedure of a CDO for an observable
S-O automaton by introducing the notion of a DAG observer
tree through a simple example. Finally, an upper bound on the
size of a DAG observer tree for an observable S-O automaton
is determined by the Theorem 4.2.

Theorem 4.1 Let M = (X,U,Y,®,n) be an input-state-output
automaton, then the following statements are equivalent:

(a) M is current (respectively initial) state observable.

(b) There exists a convergent CDO for the current (respec-
tively initial) state value.

(c) There exists a convergent DLO generating estimates of
the current (respectively initial) state.

Consider the following initial (also current) state observ-
able S-O automaton.

pome-- - r ; H
i 5
e !
Pxtoo1ox T a7
o P
O
tx2 41 x5 E E E
R
IRESN
ia3 1x6 ! '
'.._..1...; L...l---l '._-1_..1
n=1 n=2 n=3
Fig.-4.1-

General procedures for designing an initial and a current
state observers for the above automaton are describted by the
following DAG initial and current state observer trees given in
Fig.-4.2- and -4.3- respectively.

{x1,x2,x3,x4,x5,x6,x7}

n=1 n%2 n=3

{x1,x2,x3} {x4,x5,x6} {x7}

r1=2/ q=/1 2 \\n=3

{x1,x2,x3} {x5} {x6} {x4}

n=1 n 2\1=3

{x2} {x3} {x1}

Fig-4.2- DAG initial state observer tree
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{x1 ,%2,,x3,x4,x5,x6,x7}

n=1 n=2 n=3
/ \
{x1,x2,x3} {x4,x5,x6} {x7}

n=2 11=1/1=2 n=3
|

{x4,x5,x6} {x2} {6} {7}

AN

2y {6y {7}

Fig.-4.3- DAG current state observer tree

The generating of the DAG observer trees in either case are
self-descriptive as shown in the above Figs. and hence we omit
further discussion here. The following theorem will explore the
structural property as well as a bound on the size of the DAG
observer trees.

Theorem 4.2 Let M be an initial state observable state-output
automaton with N states and let OM be the DAG initial state
observer for M. Then we have:

(a) there is a node splitting (for some non-singleton node)
at each level of OM.

(b) OM has O(N) states and O(N) transitions.

(c) there exits a current state observer for M with O(N)
states.

5. AN EXAMPLE

In this section we take a simple but non-trivial partially
observed automaton to address the state estimation problem
and to illustrate the ideas presented earlier in the paper.

The automaton to be discussed is given as M = (X.U,
Y.®.n) where X = {z1,22,23},U = {a,8.7}.Y = {1,2},
n:X — Y and n(z1) = L,n(22) = n(z3) =2.¢ : X x U — X
is defined by ®{zrl.a) = z2,8(22,6) = z1,®(z3,7) = z3.
other transitions are given implicitly which are not interested
here. The observation problem is to predicate {estimate) the
system state base on the knowledge of the system dynamics.

The observation schema is shown as Fig. -5.1-

_— n(x’)=1

-—»n(x2)=n(x3)=2

Observer System

Fig-5.1-



In the following. two different observer systems, namely a
CDO and a DLO, for the given automaton M will be presented
and the convergent property of the observer systems will be
examined.

5.1 A Classical Dynamical Observer (CDO)

A classical dynamical observer M= (X Y,@.ﬁ,f’) for the
given automaton M = (X,U,®,n,Y) is constructed based on
the dvnamlcs of the ~automaton M. The state transition func-
tion @ : X x Y — X and the output function 7 : X-oVis
described by the Fig.-5.2-

A
X
1 1

: =

(n,u) —

Fig.-5.2-
Claim: V(zl.ﬁ) eX xX Jkels. st V> k, T = 24
Proving this convergent property by verifying all the state tra-
jectories induced by all the initial state pairs (z1,z1) ¢ X » X.

Two of the nine possible trajectories are displayed in Fig. -5.3a-
and -5.3b-.

k=2

Fig.-5.3b-

5.2 A Dynamical Default Logic Observer (DDLO)

In the fullowing a dynamical default logic observer. which is
based upon a first order default logic, for the given automaton
M = (X.U.Y.®,n) is constructed by the description of the
axiomatic system.

1. Symbols
1.1 Constants: 1.2,r1.22,z3
1.2 Variable:
7.7 € {z1.22.z3}. denote state and estimated state
0.7 € {1.2}. denote output and estimated
output
t1.12,¢ Z.. denote logic time.
1.3 Predicates:
succ (t1,12),2 is the successor of t1
O(t.n). M output 7 at time ¢
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EO (t,7).7 is the estimate output at ¢
S (t. )M is in state z at ¢
ES (t,Z),% is the estimate state at ¢
1.4 Connectives: —,V,A,—,+—,=,(,)
2. Formulation Rules: As in the standard first order logic.

3. Axioms:

Logical Axioms
All. A — (B — 4) :
Al.2. Sﬂ - (B—=C)— ((A—8)~
A13. (=B — =4) = ((-B — A) — B
Ald4. VzA(z) — A(2)
Al5. Vz(4 — B) —

Dynamical Axioms
A2.1. Oft,1) — ES(t,z
A2.2. O(t,2) — ES{t,z
A2.3. Succ (11,12) —
A2.4. Succ (t1,t2
A2.5. Succ Etl t2§
A2.6. ES(t,z1) — ES(t,1
A2.7. ES (t.22) V ES(t,z3) — EO(t,2)

Belief axioms
A3.1. EO (t.7) « 0{t,7)
A3.2. ES (t,%) « S(i.7)

Unique name assumption.

{(£#—0)
)
(4 — vzB)

1) ;

2) V ES(t,z3)

S(t1,z1) < ES(t2,22))
S(t1,z2) < ES t2,zl%
S(t1,z3) «— ES(t2,23

(E
&

-~

A4.1. —~(z1 = z2)

A4.2. =(z2 = x3

A4.3. —\513 =zl

Add. ~{1=2)
Fact

A5.1. Succ (1,2)

Function property
A6.1. ~ES(t,z) V -ES(t,Z
A6.2. ~EO(t,n) V ~EO(
4. Rules of Inference

R4.1. igf—p (Modus Ponens)
5. Default Rule
Ds5.1. Q2MES(t:22)) (Default)

ES{t,22) ]

We can prove this dynamical logic observer converge to
a true characterization of the given automaton state in finite
time by simulating the automaton starts from any of the states
in {z1,z2.23}.
Case-1.—at the time {. = 1, the automaton is at the state zl,
ie. S(1,71)
Proof (of convergence)

C1. O(1.1): by observation at the t. =1

C2. ES(1.71); C1 and A2.1.

By the completeness of the first order theory and the com-
plete description of the system dynamics given from A2.1 to

A2.7. everything from then on will be correct. -
Case-2.—at the time ¢ = 1, the automaton is at the state 72.
ie. S(1.72)

Proof (of convergence)

Cl. O(1.2); by observation at the t. =1
C2. ES(1.72) V ES(1.23); C1, A2.2
B3. ES (1.22): by default proof Pgg(j x0) = ({D5.1}.{})
: see Note 1
B3.1. ES (2.71): A5.1, B3, A2.4 (state estimation)
B3.2. EO (2.1): B3.1. A2.6 {output estimation)
C4. O(2.1): by observation at the t. = 2
C5. ES (2.21); C4, A21
C6. ES (1.z2): A5.1, C3, A24 (B3 has been confirmed)
By the same argument as in Case 1. the logical observer

will give correct estimations from then on.

Case-3.—at the time t. = 1, the automaton is at the state z3.
ie. S(1.z3)



Proof (of convergence)
C1. 0(1,2): by observation at the ts =1
C2. ES(1.z2) V ES(1,z3); Cl, A2.2
B3. ES (1,22); by default proof Pgg(1x2) = ({D5.1},{})
; see Note 1
B3.1. ES (2,z1); A5.1, B3, A24 (state prediction)
B3.2. EO (2,1); B3.1, A2.6 (output prediction)
C4. 0(2,2); by observation at the t5 = 2
C5. - EO(2,1) V = EO (2,2); Ad4, A6.2
B3.3 - EO (2,2); B3.2, C5
C6. EO (2,2); A3.1, C4
C7. - ES (1,z2); inconsistency of B3.3 and C6. force a
: theorem revision procedure being called
: and results in C7. see Note 2.
C8. ES (1,z3); C2, C7
By the completeness of the first order theory and the com-
plete description of the system dynamics given from A2.1 to

A2.7, everything from then on will be correct. o

—_
—

Note 1. The default proof Ppg(jxp) W-T-t- the default theory

(D,W) at the current system time is given by a top-down linear
resolution and refutation process. For a formal discussion see
'Reiter, 1980].

Note 2. Upon the occurrence of inconsistency, a theory re-
vision procedure is called which will try to make minimum
modifications over the current belief set B, where in this case
B = {B3} asingleton, so B3 must be eliminated, therefore the
only possible solution we can get is that — ES (1,z2) should be
recognized. For a formal discussion on default logic see [Reiter,
1980;.

6. CONCLUSION

In this paper we have introduced the notion of a DLS and
the introduction contains general remarks on their significance.
Here we shall confine ourselves to comments on the flexibility
of dynamical logic observers. In contrast to the design of a
classical observer which has fixed dynamics once the design
has been completed . a dynamical logic observer is a DLS de-
signed to produce state estimates for any system whose dy-
namics have been specified in the dynamical axioms (DyA) of
the DLS. We note that in the dynamical logic observer set-up
adaptation appears to be facilitated because the alteration of
an automaton A to A’ requires only the alteration of DyA to
DyA’. On the other hand, a classical observer must be totally
redesinged (a priori) in response to any change in the observed
sstem. while a general theory of the effectiveness of classical
dvnamical observers is readily available. at least in the linear
case.
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