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Abstract— The problem of selecting the appropriate number
of basis functions is a critical issue for radial basis function
neural networks. An RBF network with an overly restricted basis
gives poor predictions on new data, since the model has too
little flexibility (yielding high bias and low variance). By contrast,
an RBF network with too many basis functions also gives poor
generalization performance since it is too flexible and fits too
much of the noise on the training data (yielding low bias but high
variance). Bias and variance are complementary quantities, and
it is necessary to assign the number of basis function optimally in
order to achieve the best compromise between them. In this paper
we derive a theoretical criterion for assigning the appropriate
number of basis functions. We use Stein’s unbiased risk estimator
(SURE) to derive a generic criterion that defines the optimum
number of basis functions to use for a given problem. The efficacy
of this criterion is illustrated experimentally.

I. INTRODUCTION

Radial basis function (RBF) networks are a major class of
neural network model, where the distance between the input
vector and a prototype vector determines the activation of a
hidden unit. RBF networks have attracted a lot of interest in
the past. One reason is that they form a unifying link between
function approximation, regularization, noisy interpolation,
classification and density estimation. It is also the case that
training radial basis function networks is usually faster than
training multi-layer perceptron networks.

RBF network training usually proceeds in two steps: First,
the basis function parameters (corresponding to hidden units)
are determined by clustering. Second, the final-layer weights
are determined by least squares which reduces to solving a
simple linear system. Thus, the first stage is an unsupervised
method which is relatively fast, and the second stage requires
the solution of a linear problem, which is therefore also fast.

One of the advantages of radial basis function neural
networks, compared to multi-layer perceptron networks, is
the possibility of choosing suitable parameters for the units
of hidden layer without having to perform a non-linear opti-
mization of the network parameters. However, the problem of
selecting the appropriate number of basis functions remains a
critical issue for RBF networks. The number of basis functions
controls the complexity, and hence the generalization ability of
RBF networks. An RBF network with too few basis functions
gives poor predictions on new data, i.e. poor generalization,
since the model has limited flexibility. On the other hand, an
RBF network with too many basis functions also yields poor
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generalization since it is too flexible and fits the noise in the
training data. A small number of basis functions yields a high
bias, low variance estimator, whereas a large number of basis
functions yields a low bias but high variance estimator. The
best generalization performance is obtained via a compromise
between the conflicting requirements of reducing bias while
simultaneously reducing variance. This tradeoff highlights the
importance of optimizing the complexity of the model in order
to achieve the best generalization.

In this paper, we propose a criterion for selecting the number
of radial basis functions in an RBF network. To develop a
theoretically well motivated criterion for choosing an appro-
priate number of basis functions , we derive a generalization of
Stein’s unbiased risk estimator (SURE) [5] that can be used to
define a generic criterion which defines the optimum number
of basis functions to use in a given problem.

In Section Il of this paper we review RBF networks and
their training algorithm. We then explain the under-fitting and
over-fitting effects caused by using an inappropriate number of
basis functions for RBF networks in Section Ill. In Section IV
we derive a generalization of SURE, and in Section V show
how it can be applied to RBF networks. Experimental results
of the proposed criterion and its performance are presented in
Section VI.

Il. RADIAL BASIS FUNCTION NETWORKS

Radial basis function methods became a popular technique
in the mid 80s for performing exact interpolation of a set
of data points in a high-dimensional space [7]. The basic
technique provides an interpolating function which passes
through every data point: Consider a mapping from a d-
dimensional input space to a one-dimensional target space
y, where the data set consists of N input vectors X;, with
corresponding targets y;, ¢ = 1....N. An exact interpolation is
achieved by introducing a set of NV basis functions, one for
each data point, and then setting the weights for the linear
combination of basis functions. Here, basis functions are non-
linear functions, ® (||« — z;||), of the input vectors z;, and a
linear combination of these basis functions can be written as

N
> wid(llz — i)
i=1

The interpolation problem can then be written in a matrix
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Fig. 1. A graphical form of a radial bassis function neural network
architecture. Basis functions act like hidden units. The corresponding elements
wj; of the vector u; is represented by the line connecting basis function @ ;
to the inputs. The weights w;; are shown as lines from the basis functions
to the output units. An extra basis function whose output is fixed at 1 serves
as the bias for each output unit.

form as
W =y

where the square matrix @ has elements ®;; = ®(||z; —zi).
This linear system of equations can be solved to yield

W=>aly

For the case of Gaussian basis functions we have

ooy = (- 22)

where v is a parameter that controls the smoothness of the
interpolating function.

A radial basis function neural network model [2], [6]
can be obtained by a number of modifications to the exact
interpolation procedure as follows: First, the number, M, of
basis functions is usually much less than the number, N, of
data points. Second, the centers of the basis functions no
longer need to be given by input data vectors, and appropriate
centers can alternatively be determined during the training
process. Third, unlike the exact interpolation procedure, each
basis function can have its own width parameter, v;, whose
value is also determined in the training process. Finally, by
applying these changes to the original (exact) interpolation
formula we obtain the following form for the radial basis
function neural network mapping.

M
w(X) = D wi®(X) + wo @)
j=1

By including an extra basis function ®; whose activation
is set to 1, the biases wyo can be absorbed into the final

summation. Another useful variation is the normalized RBF
representation:

M
> =1 Wk 5 (X)
M
2 r=1 @ (X)
This normalized representation is closely related to TSK fuzzy
inference systems [9][10].

Several forms of basis function have been considered in
previous research on RBF models, the most common being

the Gaussian:
[|[X =yl
q)j (X) = €Xp (_ 202 :
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yk(X) =

where X is the d-dimensional input vector with elements z;,
and y; is the center of basis function ®;.

In practice, training RBF networks proceeds through two
steps. The first step determines the first layer of weights, in
which the basis function parameters u; and o; are selected
based on the X-values of the training samples (via unsuper-
vised learning techniques). The basis functions are then kept
fixed while the second-layer weights w;, are estimated via
linear least squares.

Typical approaches for the first phase include using the
generalized Lloyd algorithm (GLA) and Konhonen’s self-
organized maps (SOM). Another common approach is to
model the input distribution as a Gaussian mixture model
and then estimate the center and width parameters of the
Gaussian mixture components via the EM algorithm [1]. For
the second phase one can consider the radial basis function
network mapping in (1). If we absorb the bias parameters into
the weights, this can be written in matrix notation as

Y = Wo )

where Y is a matrix of output values, and W = (wy;) is a
matrix of second-layer weights to be estimated.

This is a classical least squares estimation problem. A
necessary condition for ||Y — W®||* to be minimized is that
W must satisfy !

W= (@o7e) o’y
I1l. MODEL VALIDATION

Learning a radial basis function network from data is
a parameter estimation problem. One difficulty with this
problem is selecting parameters that show good performance
both on training and testing data. In principle, a model is
selected to have parameters associated with the best observed
performance on training data, although our goal really is
to achieve good performance on unseen testing data. Not
surprisingly, a model selected on the basis of training data does

1A unique solution exists as long as the columns of & are linearly
independent. This will be true in most cases when the number of basis is
smaller than the number of data points. Under this condition W can be
estimated via W = (®T®)~1®TY. For the case where the columns of
& are not linearly independent, equation (2) are solved using singular value
decomposition, to avoid problems due to ill-conditioning of the matrix ®.



not necessarily exhibit comparable performance on the testing
data. When squared error is used as the performance index, a
zero-error model on the training data can always be achieved
by using a sufficient number of basis functions. However,
training error, err, and testing error, Err, do not demonstrate
a linear relationship. In particular, a smaller training error does
do not necessarily result in a smaller testing error. In practice,
one often observes that, up to a certain point, the model error
on testing data tends to decrease as the training error decreases.
However, if one attempts to decrease the training error too far
by increasing model complexity, the testing error often can
take a dramatic increase.

The basic reason behind this phenomenon is that in the
process of minimizing training error, after a certain point, the
model begins to over-fit the training set. Over-fitting in this
context means fitting the model to training data at the expense
of losing generality. In the extreme form, as we mentioned in
the previous section, a set of NV training data points can be
modeled exactly with N radial basis functions. Such a model
follows the training data perfectly. However, the model is not
representative features of the true underlying data source, and
this is why it fails to correctly model new data points.

In general, the training error rate err will be less than the
testing error on the new data, Err. A model typically adapts
to the training data, and hence the training error err will be an
overly optimistic estimate of the generalization error Err. An
obvious way to estimate generalization error is to estimate the
degree of optimism O P inherent in a particular estimate, and
then add a penalty term to the training error to compensate,
i.e., such that E'rr = err + O P. The method described in the
next section works in this way.

IV. ESTIMATING THE OPTIMISM
Let:

- MSE()=E(f - ?.

« f(X) denote the prediction model, which is estimated
from a training sample by the RBF neural network model.

« f(X) denote the real moddl.

« err denote the training error, which is the average loss
over the training sample.

« Err denote the generalization error, which is the ex-
pected prediction error on an independent test sample.

Recall that the training error, err = Zf\;l@— y)?, is an
estimate of the expectation of the squared error on the training
data, E(7—y)?, while the generalization error (test error) Err
is an estimate of mean squared error, M SE = (f f)?, where
F(X) is the estimated model and f(X) is the true model.

Now suppose yi = fzi) +ei, Where ¢ is additive Gaussian
noise N (0, 0?). We need to estimate 7 from training data D =
{(zs, y:)}}. Consider

El(fo—w)?] = El(f-f-¢)?
= Bl - 1)1+ Ble*) = 2B[(] — D3
= E[(f-HH+0*—2E(F- ] @)

Here, the last term can be written as:

E@2e(f—f)] = 2Elwo—f)(f—H] = cov(yo, f)

We consider two different cases.
a) Case 1.: Consider the case in which a new data point
has been introduced to the estimated model, i.e.(zo, y0) ¢ D.
Since yo_is a new point, f and yo are independent. Therefore
cov(yo, f) =0 and (4) in this case can be written as:

El(f- )Y = o~ E(f—w)’ )

This is the justification behind the technique of cross vali-
dation. In cross validation, to avoid overfitting or underfitting,
a validation data set is used which is independent from the
estimated model. The optimal model parameters should be
selected to have the best performance index associated with
this data set. Since this data set is independent from the
estimated model, it is a fair estimate of E(f f)? and
consequently of generalization error Err as indicated in (5).

b) Case 2.: A more interesting case is the case in which
we do not use new data points to assess the performance of the
estimated model, and the traing data is used for both estimating
and assessing a model f In this case the cross term in (4)
cannot be ignored because f and yo are not independent.
Therefore the cross term, which is cov(yo,f), is not zero.
However the cross term can be estimated by Stein’s lemma
[5] [8], which was originally proposed to estimate the mean
of a Guassian distribution [8].

According to Stein’s lemma if X ~ N(6,0?) and g(z) is
differentiable function then E(g(z)(z—60)) = 02 E(¢'(z)). So
we let

ge)=Ff-f=F-y—e

and z = . Then by applying Stein’s lemma we obtain

- , o df
BeF-1) = oB6E) = oE(G)
Summing over all y we get
N N ]?
Err = > (§-y)*— No’ + 20 Z
i=1 i=1
= err— No%+20 Z; dyz) (6)

This is known as Stein’s Unbiased Risk Estimator (SURE).
V. DETERMINING THE OPTIMUM NUMBER OF BASIS
FUNCTIONS

Based on this criterion, the optimum number of clusters
should be assigned to have the minimum generalization error
Err in (6). From the least squared solution of (2) we have:

w = (e7e) e’y

= ow=a0@"e) ¢’y = HY )
where H depends on the input vector z; but not on y;. Note
that in practice, the equation (2) is solved using singular



value decomposition to avoid problems due to possible ill-
conditioning of the matrix ®.

__From (7) we can easily obtain the required derivative of
f(z;) with respect to y;.

> >,
i=1 ' i=1

Now, substituting this into (6) we obtain

N
err — No? + 252 ZH“

i=1

FErr =

Here we observe that valen = Trace(H), the sum of
the diagonal elements of H. Thus, we can obtain the further
simplification that Trace(H) = Trace(®(®T®) 1aT) =
Trace(<1>T<I>(<I>T<I>)_1) = Trace(I) = P, where P is the
dimension of ®. Since ® is a projection of input matrix X
onto a basis set spanned by M, the number of basis functions,
one can show generally P = M + 1.

To use this method to find the optimum number of clusters,
we simply choose the model that obtains the smallest Err
over the set of models considered. Given a set of models
far(z) indexed by the number of basis functions, M, denote
the training error for each model by err(M). We then obtain

Err(M) = err(M)— No?+20%(M + 1) (8)

where N is the number of training samples and the noise, o2,
can be estimated from the mean squared error of the model.

VI. EXPERIMENTAL RESULTS

To explore the effectiveness of our complexity control
method, we considered the problem of fitting a RBF network
model to a set of points (Figure 2). The goal is to minimize the
squared generalization error Err. To determine the efficacy of
the method we compared its performance to the well studied
standard cross validation [4].

We first conducted a simple series of experiments by fixing
a uniform distribution on the unit interval [0,1], and then
fixing various target functions f : [0,1] — R. To generate
training samples, a sequence of values z1, ..., z; is drawn from
[0, 1], the target function values f(z1), .., f(z:) are computed,
and independent Gaussian noise is added to each value. In
the first step of RBF network training, centers y; and width
parameter v; are estimated using subtractive clustering [3], an
unsupervised training technique.

For a given training sample, the series of best fit functions
corresponding to a number of basis functions M= 1, 2, ..
,etc. are computed. Given this sequence, the cross validation
strategy will choose some particular model f3, on the basis
of the observed empirical errors on the validation data set
(generated the same way as training data). Our technique will
alternatively chose the model corresponding to minimum Err
in (8). To determine the effectiveness of these two strategies,
the ratio of the test error of the model selected by them to
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Fig. 2. (a)Overfitting, underfitting, and the best estimated model for y =
%(z) (b) Err obtained in (8) used to find the optimum number of clusters

for model y = sin(z)

x
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Fig. 3. Data generated in 3D dimensional space by nonlinear function
‘Peaks’ and distorted by additive Gaussian noise N(0,0.25).

the best test error on a new test data set among the models in
sequence M = 1,2, .. is measured.

Table 1 shows the results obtained for fitting various func-
tions. These results are obtained by repeatedly generating
training samples of a fixed size, and recording the ratio of
test error achieved relative to the best possible test error, for
each technique (CV and SURE).

In another experiment we considered a highly nonlinear
function distorted by Gaussian noise.



| CV I SURE |

Target function | N || Test error ratio | RBF diff. || Test error ratio | RBF diff.
step(z > 0.5) | 100 1.013 0.15 1.011 -0.06
sin(1) 100 1.005 0.19 1.006 0.13
sin?(2rx) 100 1.02 0.05 1.02 -0.05
step(z > 0.5) | 200 1.008 0.2 1.008 0.00
sin(1) 200 1.005 0.29 1.005 0.31
sin?(2rx) 200 1.017 0.2 1.015 -0.01

TABLE |

FITTING DIFFERENT TARGET FUNCTIONSWITH o = 0.25. TABLE REPORTS RATIO OF TEST ERRORS RELATIVE TO BEST POSSIBLE TEST
ERROR ACHIEVED BY DIFFERENT METHODS. A SMALLER RATIO IS BETTER. RESULTS ARE REPORTED AT TRAINING SAMPLE SIZES
N =100 AND N = 200 AND AVERAGED OVER 100 REPEATED TRIALS IN EACH CASE. COLUMNS 4 AND 6 SHOW THE DIFFERENCE

BETWEEN THE OPTIMUM NUMBER OF RBF FUNCTIONSAND THE NUMBER OF RBF FUNCTIONSCHOSEN BY CV AND SURE
RESPECTIVELY.

Smoot Function Estimation

VIlI. CONCLUSION

We have proposed a new approach to choosing the optimum
number of basis functions for RBF networks. Our approach
minimizes a theoretically unbiased estimate of generalization
error of the model. Our experimental results validate the
effectiveness of this approach. A comparison cross validation
illustrates that the generalization error of the models selected
by our approach can be less than models selected by cross
validation. Importantly, this is achieved while requiring much
less computation than cross validation. The utility of our
method is greatest when there is insufficient data to hold out
a validation set for cross validation.
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