
Published online 10 June 2003

Abstraction and reformulation in artificial intelligence

Robert C. Holte1* and Berthe Y. Choueiry2

1Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
2Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

(choueiry@cse.unl.edu)

This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show
that there are compelling reasons motivating the use of abstraction in the purely computational realm of
artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by
providing examples of the abstraction processes currently used in artificial intelligence. Although each
type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate
the richness and variety of abstraction in its fullest sense.

Keywords: artificial intelligence; abstraction; reformulation; search; constraint satisfaction

1. INTRODUCTION

In the early days of AI much attention was paid to human
reasoning. One reason for this was the aim of developing
computational models of human cognition. This branch of
AI later joined with like-minded researchers in philosophy,
psychology and the neurosciences to create cognitive
science. The second reason for AI researchers to study
human reasoning was to obtain suggestions about how to
program a computer to perform a particular cognitive task,
such as playing chess. The aim, in this case, was not to
develop a theory of human cognition, but a working pro-
gram that performed the given task with human com-
petence or better. The computer was not constrained to
mimic human thought, but human methods, even if they
could be encoded only approximately, seemed a natural
starting point for the development of the computer pro-
grams. For example, in 1950 Claude Shannon proposed
encoding the knowledge and basic thought processes of
human chess experts to create an expert-level chess-
playing program (Shannon 1950).

In analysing effective, creative, human problem solving
it became clear that success often hinged on looking at a
given problem from different points of view. One naturally
starts with the point of view suggested by the problem
statement, but if that does not lead to success, a good
problem solver will change the problem to a more per-
spicuous form. For example, many of the techniques in
George Polya’s influential book How to solve it (Polya
1945) are of this kind: replace a problem by its generaliz-
ation, introduce an auxiliary element, adopt a good
notation, etc. In some cases the solution, or insolubility,
of the modified problem directly gives the answer to the
original problem, whereas in others solving the modified
problem is meant to give insight into the original problem

* Author for correspondence (holte@cs.ualberta.ca).

One contribution of 16 to a Theme Issue ‘The abstraction paths: from
experience to concept’.

Phil. Trans. R. Soc. Lond. B (2003) 358, 1197–1204 1197 2003 The Royal Society
DOI 10.1098/rstb.2003.1317

or guidance about how it might be solved. To illustrate
the general idea consider the 8 × 8 mutilated array shown
in figure 1. The aim is to determine if it is possible to
exactly cover the array with 2 × 1 tiles. This version of the
problem is difficult for humans, even though there is a
very simple solution. The solution can be seen clearly by
making two modifications to the original problem. The
first is to add colour to the squares in a checkerboard
fashion as shown in figure 2. The second modification is
to forego reasoning about how to place the tiles on the
array and reason instead about the number of black (B)
and white (W) squares and how these numbers change
when a tile is laid on the array. However a tile is laid, B
and W are each reduced by 1, so the original question has
been transformed to ‘is it possible to reduce B and W to
0 by subtracting 1 from each of them some number of
times?’ It is now obvious that this is impossible if B and
W are different, as they are in the mutilated array. This
proves that the array cannot be exactly covered with
2 × 1 tiles. It is worth noting that B and W being equal
does not guarantee that the array can be covered by tiles
(see figure 3): insolubility of the modified problem
guarantees insolubility of the original, but not vice versa.
Just because humans solve the mutilated array problem in
this way does not oblige computers to do so. However, as
a matter of fact, AI programs for problem solving or the-
orem proving solve the modified version of the mutilated
array problem much more efficiently than they solve the
original. This was first observed in the 1960s (McCarthy
1964; Newell 1965) and is still true today.

The general idea of changing the statement, or rep-
resentation, of a given problem is called, in AI, change of
representation or reformulation. Herb Simon argued that
there was an intimate connection between reformulation
and problem solving:

All mathematics exhibits in its conclusions only what is
already implicit in its premises […] Hence all mathemat-
ical derivation can be viewed simply as change in rep-
resentation, making evident what was previously true
but obscure. This view can be extended to problem

1198 R. C. Holte and B. Y. Choueiry Artificial intelligence

Figure 1. 8 × 8 Mutilated array.

Figure 2. Adding colour to the 8 × 8 mutilated array.

Figure 3. 8 × 8 Array with B = W that cannot be tiled.

solving—solving a problem simply means representing it
so as to make the solution transparent.

(Simon 1981, p. 153)

Abstraction is a kind of reformulation, but not all
reformulations are abstractions. For example, the addition
of colour to the mutilated array is certainly not an abstrac-
tion, but the mapping from an array to a pair of numbers
(B and W) is an abstraction. Precise definitions of
‘abstraction’, distinguishing it from the all-encompassing
notion of reformulation, exist in certain specific contexts,
but a precise, universal definition of abstraction is not yet
available. The failure to produce a satisfactory definition
of abstraction reflects the difficulty of giving a characteriz-
ation that is general enough to encompass the great diver-
sity of techniques that fall into the intuitive category of
‘abstractions’ while at the same time being specific enough
to exclude reformulations that intuitively are not abstrac-
tions.

It is hoped that this article contributes in two ways to
the aims of this special issue on abstraction. The first is
to show that issues that might be thought to arise strictly
in the realm of human reasoning arise in much the same
form in the purely computational realm of AI. Although
there are undoubtedly many purely psychological reasons
underlying abstraction in human behaviour, there are cer-
tainly compelling computational reasons motivating the
use of abstraction.

Phil. Trans. R. Soc. Lond. B (2003)

Second, this article contributes to the overall discussion
of the nature of abstraction by providing examples of the
abstraction processes that are currently used in AI.
Although each type of abstraction is specific to a some-
what narrow context, it is hoped that, collectively, they
illustrate the richness and variety of abstraction in its full-
est sense.

This article does not give a comprehensive survey of
work in AI relevant to the subject of this special Trans-
actions issue. Most importantly, no mention is made of
learning, the process of extracting general rules of behav-
iour or knowledge from experience. The field of machine
learning is large and very active, and includes highly rel-
evant topics such as the creation of abstract symbolic rep-
resentations (Drummond 1999, 2002) and the invention
of useful novel concepts (Muggleton 1988; Saitta &
Zucker 1998; Zucker et al. 2002). The present article
focuses on techniques that do not involve learning: they
create abstractions by analysing the given problem, not by
accumulating and then generalizing a wealth of experi-
ence. A second important topic omitted from this paper is
the use of abstraction to summarize the results of complex
computations so that they can be understood by humans,
as is done, for example, by Gruber & Gautier (1993) and
Mallory et al. (1996) for qualitative simulations, by Huang
(1994) for proofs of mathematical theorems, and by
Shahar (1997) for medical applications. Even within this
narrower focus, the article is not a survey of all known
abstraction methods. It presents the methods that are at
present the most common and most successful. To see
the full range of techniques, the reader may consult the
Proceedings of the International Symposium on Abstraction,
Reformulation, and Approximation (Choueiry & Walsh
2000; Koenig & Holte 2002).

2. PLANNING AND PROBLEM SOLVING

The earliest and most widespread and successful use of
abstraction in AI is in planning and problem solving.
These are tasks in which the aim is to find a sequence of
‘actions’ that transforms an initial ‘state’ into some desired
goal state. The most familiar example of a planning task
is route planning. The aim, in this case, is to find a route
from a starting point to a destination, and the actions are
defined by the roads or other allowable means of transpor-
tation. A second familiar example is solving a puzzle, such
as Rubik’s Cube. The aim here is to find a sequence of
moves that transforms the initial, scrambled arrangement
of the puzzle into the orderly arrangement that serves as
the goal.

As early as 1961 Minsky proposed using abstraction to
solve such problems (Minsky 1961). Problem solving pro-
ceeds in two stages. The first stage focuses on the most
important or most difficult aspects of the problem, entirely
ignoring all other details. Once the abstract problem is
solved, its solution is used, in the second stage, as a basis
for the full solution to the original problem. In planning
a trip from the Eiffel Tower to the Sydney Opera House,
for example, one would work out the entire route from
Paris to Sydney before considering the route to take within
Paris. The main implementations of this abstraction tech-
nique are reported in Sacerdoti (1974), Knoblock (1991)
and Holte et al. (1996).

Artificial intelligence R. C. Holte and B. Y. Choueiry 1199

Technically, the biggest challenge in this approach is
guaranteeing that it is possible to ‘flesh out’ the abstract
solution into a complete solution. This is guaranteed in
certain special circumstances (for example, in Holte et al.
1996) but not in general, and when it does not hold, this
approach can be much less efficient than methods that do
not use abstraction (Bacchus & Yang 1994).

However, there is an entirely different way to use the
very same abstractions to guide problem solving. Instead
of using the abstract solution as a skeleton for the full sol-
ution, one can simply use the length of the abstract sol-
ution as an estimate of the length of the final solution.
This may seem to be throwing away a great deal of infor-
mation, but by not trying to conform to the abstract sol-
ution step by step, the technical problem just mentioned
is avoided.

This alternative approach is called heuristic search,
because the function that estimates solution length is
called the heuristic function. Heuristic search dates to the
1960s (Doran & Michie 1966; Hart et al. 1968), but the
idea of using abstraction to create a heuristic function was
not proposed until 1979 (Guida & Somalvico 1979;
Gasching 1979). This approach to creating heuristic func-
tions was popularized by the influential book Heuristics
(Pearl 1984) but not fully mechanized for several years
(Mostow & Prieditis 1989; Prieditis 1993).

A formal, general definition for abstraction in the con-
text of heuristic search is given by Prieditis (1993). In
English, it can be roughly paraphrased as follows: problem
A is an abstraction of problem B if the solution to A is
guaranteed to be shorter than, or the same length as, the
solution for B.

This is broader than the intuitive notion of abstraction,
because there does not have to be any relationship at all
between the structure or content of the original problem
(B) and the abstract problem (A). All that is required is
that a certain relationship should hold between the lengths
of their solutions. This is understandable, in the context
of heuristic search, because only the length of the abstract
solution is used. In reality, however, systems that use
abstraction to create heuristics automatically invariably
construct abstract problems that are intimately related to
the original problem. Indeed, the method was originally
described as using a simplified version of a problem to
estimate solution length.

The state of the art in using abstraction to create heuris-
tic functions is the pattern database technique introduced
by Joe Culberson and Jonathan Schaeffer in 1994
(Culberson & Schaeffer 1994, 1996, 1998). It is well illus-
trated by its application to Rubik’s Cube (Korf 1997). To
estimate how many moves it will take to unscramble the
cube from some specific scrambled state, consider the
simpler problem in which all the corner pieces have been
painted black to be indistinguishable from each other. To
unscramble this abstract cube is a much easier matter—
it only requires getting all the edge pieces into their goal
positions. The number of moves it takes to do that is obvi-
ously an underestimate of the number of moves required
to solve the original problem, which must unscramble the
corners as well as the edges. By itself this is a rather poor
estimate of solution length, because the corners are in no
way taken into account, but it can be combined with a
different abstraction of the problem in which the edge

Phil. Trans. R. Soc. Lond. B (2003)

Figure 4. A solution of the 4-queens problem.

pieces are all painted black and the corners must be
solved. Together these are very effective in guiding the
search for a solution to the original problem.

The general idea illustrated in this example, by painting
all the corner pieces black, is called domain abstraction.
Its essence is to transform a problem by making distinct
elements of the problem indistinguishable: the eight cor-
ner pieces are distinguishable from each other in the orig-
inal problem but not after they have been painted black.
Note, however, that there are still eight corner pieces.
Domain abstraction does not change the number of prob-
lem elements, it just reduces their distinguishability. A dif-
ferent abstraction technique, called projection, takes the
opposite approach: it abstracts a problem by eliminating
problem elements. Projection has recently proven very
useful in creating heuristic functions for planning
(Edelkamp 2001).

3. CONSTRAINT PROCESSING

Constraint processing is a paradigm for expressing and
solving decision problems in engineering and manage-
ment. As in planning, the use of an abstract solution as a
skeleton to guide the construction of a full solution has
also been exploited in this area (Bistarelli et al. 2000).
Beyond this general use of abstraction, particular attention
has been paid to modelling and the automatic detection
and use of symmetry relations.

A familiar example of a CSP is the 4-queens problem,
where the task is to place four queens on a 4 × 4 chess-
board in such a way that no two queens attack each other
(figure 4). In general, a CSP is defined by three elements:
(i) a set of decisions to be made; (ii) a set of choices avail-
able for each decision; and (iii) a set of constraints that
restrict the acceptable combination of choices for the
decisions. The CSP task is to find a consistent solution,
i.e. a choice for each decision such that all the constraints
are satisfied. In the 4-queens problem, the decisions are
where to place each queen, the choices for each queen are
any of the 16 squares, and the constraints are that the
queens must not be placed on the same square or on
squares in the same row, column or diagonal.

The process of modelling a problem by constructing a
representation that can be processed by a computer is an
important abstraction process at which humans excel but
computers do not. This is perhaps the most challenging
aspect of abstraction in AI and the closest to the research
in psychology and cognitive science.

CSPs are invariably modelled as follows. Each decision
is represented by a variable. The ad choices available for
a particular decision d are represented by the integers
1...ad, called the ‘domain’ of the variable. Thus, choosing

1200 R. C. Holte and B. Y. Choueiry Artificial intelligence

alternative k for decision d is modelled as assigning value
k to variable Vd. Each constraint is modelled as a set of
allowable combinations of assignments of values to vari-
ables.

For example, one natural way to model the 4-queens
problem in this framework is to define a decision variable
for each square on the board. The square can be either
empty (value 1) or have a queen (value 2). The constraints
specify that exactly four of the decision variables have a
value of 2 (‘queen in this square’) and that there cannot
be two queens in the same row, column or diagonal.
Because there are 16 variables (one for each square) and
each can take on two possible values, there are a total of
216 (65 536) possible assignments of values to the decision
variables in this method of modelling the 4-queens prob-
lem.

There are other ways of modelling the 4-queens prob-
lem within the CSP framework. One alternative is to treat
each row on the board as a decision variable. The values
that can be taken by each variable are the four column
positions in the row. This formulation yields 44 (256)
possibilities, which is significantly fewer than the previous
one. Bernard Nadel explored eight different possible for-
mulations of this simple problem (Nadel 1990), and found
some were much easier to solve than others using a stan-
dard CSP solver. This example illustrates how the initial
formulation, or model, affects the number of possibilities
to be examined, and thus the efficiency of problem solv-
ing.

Most of the research on abstraction in constraint pro-
cessing has focused on manipulating a given formulation
of a problem. Because the problem is represented by its
variables, their domains and the constraints, the various
abstractions explored operate on a combination of one or
more of these components.

The most common abstraction applied to domains in
constraint processing is based on symmetry. For example,
solutions to the N-queens problem can be transformed
into other solutions based on symmetries about the hori-
zontal axis, the vertical axis and various diagonals
(Mozetič 1991). When the symmetry is known in advance,
it can be exploited by the problem solver to avoid
unnecessary exploration of equivalent solutions. Another
typical example is the pigeonhole problem where one has
to place (n � 1) objects into n pigeonholes, such that each
pigeonhole contains, at most, one object. To a human it
is immediately obvious that this is impossible, but to reach
this conclusion one must abstract the problem to a coun-
ting argument, much as was done to solve the mutilated
array problem. In the absence of any such abstraction, it
is necessary to try all the different methods of assigning
each object to each pigeonhole. There are a vast number
of possibilities to consider. However, if the problem solver
is instructed how to exploit the symmetries—all objects
act identically, as do all pigeonholes—the insolubility of
the problem can be established with very little compu-
tation. Such symmetries have been studied since 1874
(Glaisher 1874) and have recently received increased
attention (Fillmore & Williamson 1974; Brown et al.
1988; Puget 1993; Backofen & Will 1999; Gent & Smith
2000; Hentenryck 2002).

The pigeonhole problem is an example of symmetries
based on an equivalence relation among the values for the

Phil. Trans. R. Soc. Lond. B (2003)

variables. A set of values in the domain of a particular
variable are said to be equivalent if they all produce ident-
ical results in the context of the problem being solved.
This notion of equivalence allows a variable’s domain to
be partitioned into equivalence classes, where all the
values in an equivalence class are equivalent. This allows
CSP problems to be solved much more quickly because
instead of considering all the different values in the
domain it is necessary only to consider one representative
of each class (Hubbe & Freuder 1989; Freuder 1991; Ell-
man 1993; Haselböck 1993; Choueiry et al. 1995;
Freuder & Sabin 1995; Weigel et al. 1996; Weigel & Fal-
tings 1997; Choueiry & Noubir 1998). Dynamic bundling
is a technique for efficiently discovering equivalence
relations during problem solving (Choueiry & Davis
2002). It has been shown to yield multiple solutions to a
CSP with significantly less effort than is necessary to find
a single solution.

A common abstraction that is applied to the variables
in a CSP is decomposition. For example, under some con-
ditions decisions that tightly interact can be considered
together, in isolation from the rest of the problem.
Another technique for abstracting variables is aggregation.
Consider a graph-colouring problem where the nodes of
a graph need to be assigned a colour such that no two
adjacent nodes have the same colour. The natural formu-
lation of this problem as a CSP has the nodes as the
decision variables and the colours as the possible values.
Nodes that are not directly connected to one another but
are connected to the same other nodes in the graph can
be given the same colour in any solution to the problem.
Thus, the variables representing these nodes can be
pooled together as a single variable. This aggregation,
which can be applied repeatedly, reduces the number of
variables in the CSP, consequently reducing the cost of
finding a solution. This procedure will not necessarily find
all possible solutions, but it is guaranteed to find a solution
to the problem if one exists.

Finally, there are at least two types of constraint
abstraction. In the first type, one or more constraints,
judiciously chosen, can be eliminated to transform a given
difficult problem into a tractable one. If the tractable prob-
lem is shown to be unsolvable, the original problem will
also have been shown to be unsolvable, as in the example
of the mutilated array problem. By contrast, if a solution
is found for the tractable problem it can be used as a guide
to finding a solution to the original problem.

The second type of constraint abstraction consists in
replacing a non-binary constraint (i.e. a constraint that
applies to several variables simultaneously) by a network
of binary constraints (i.e. constraints that apply to two
variables at the same time). In general, binary constraints
are preferable to non-binary ones because they are easier
to handle, and because most known techniques in con-
straint processing have been developed for binary con-
straints. This process is called constraint decomposition
and it can be done exactly or approximately.

An efficient form of approximate constraint decompo-
sition is projection. The simplest way to illustrate projec-
tion is by a geometric example in which there are two
continuous variables, x and y, and a constraint C(x, y)
specifying the allowable combinations of values for x and
y. Any such constraint can be pictured as a region, or

Artificial intelligence R. C. Holte and B. Y. Choueiry 1201

C(x, y)

y

x

C(y)

C(x)

Figure 5. Projection of two-dimensional constraints onto
individual dimensions.

regions, in the x–y plane, as shown in figure 5—only
(x, y) combinations in the shaded region are permitted by
constraint C(x, y). As the figure suggests, C might be a
very complex shape. It can be approximated by two very
simple constraints, C(x) and C(y) created by projecting
the C(x, y) region onto the x and y axes, respectively. The
two projections in this example are simple intervals on the
x and y axes. This idea generalizes to projecting any num-
ber of dimensions onto any smaller number of dimensions,
and thus can be used to project non-binary constraints
(e.g. involving six variables) to create binary constraints
(involving two variables).

4. REASONING ABOUT PHYSICAL SYSTEMS

The goal of this area of AI is to construct a model of
the dynamic behaviour of a physical system, and then pro-
cess the model to predict or explain the behaviour of the
system under given conditions. For example, it aims at
predicting the behaviour of an electromechanical device
given its components, their functionalities, the way they
are connected and the operating conditions. In the area
of reasoning about physical systems, abstraction is usually
identified with the concept of simplification. Examples of
the use abstraction in reasoning about physical systems
are abundant at the three main stages of the reasoning
process, namely when choosing or building a model of the
physical system, processing the model and explaining the
output (Choueiry et al. 2003).

A physical system can be described at various levels of
abstraction, from the atomic level to the macroscopic one,
depending on the intended use of the model. For instance,
a wire can be described as an electrical conductor, which
is, in turn, either an ideal conductor or a resistor (Nayak &
Joskowicz 1996). The resistor can be modelled as a con-
stant, thermal or temperature-dependent resistor, etc. The
appropriate level of detail depends on the reasoning task
to be performed and the aspects of the behaviour of the
system that need to be explained or predicted. The final
model must be detailed enough to capture correctly the
behaviour sought, but ideally would include no unnecess-
ary details. These considerations guide the selection of
model fragments for the various components of the device
and their composition, by compositional modelling, into
a global model that describes the behaviour of the system

Phil. Trans. R. Soc. Lond. B (2003)

1

1

(a)

(b)

Figure 6. (a) Sine function and a (b) square function.

(Falkenhainer & Forbus 1991; Rickel & Porter 1994; Levy
et al. 1997).

This global model can be a system of algebraic, differen-
tial equations or a set of qualitative, causal relations
(Nayak & Joskowicz 1996). Before being processed, this
model is usually further simplified. For example, negli-
gible terms can be dropped, mathematical equations can
be made linear, and systems of equations can be decom-
posed. Such simplifications are common abstractions car-
ried out by engineers and mathematicians. They may
affect the precision of the ultimate result, but are typically
carried out to reduce the computational cost of the sub-
sequent step, which aims at finding a solution. This illus-
trates the typical use of abstraction in AI and engineering:
the representation is ‘simplified’ to speed up the problem-
solving process while knowingly affecting the quality of the
outcome within a (sometimes bounded) threshold.

It is important to recognize that some of the commonly
used ‘simplification’ techniques only result in simplifi-
cation in certain circumstances: in different circum-
stances, exactly the same technique might complicate
matters instead of simplifying them. For example, con-
sider the sine function y = sin(x) and its approximation by
the square function shown in figure 6. These functions are
being shown in what is called the temporal domain—the
x-axis represents time. In this domain the square function
is clearly an abstraction of the sine function, because all
y-values in [0, 1] are abstracted to 1, and all values in
[�1, 0) are abstracted to �1. As long as the problem solv-
ing remains in the temporal domain, the square function
constitutes an abstraction of the sine function. However,
physicists and electrical engineers frequently transform
problems from the temporal domain into what is called
the frequency domain. Oddly, when this is done, the
square function becomes much more complex than the
sine function. It is thus important to make explicit the
precise measure of simplicity used and the conditions
under which it holds.

In summary, abstraction is ubiquitous in reasoning
about physical systems. In a detailed study, abstraction
techniques have been shown to be elaborate combinations
of the following ‘elementary’ operations: replacement,
decomposition, aggregation and focusing (Choueiry et al.
2003). Although most of the above techniques have been
discussed in the AI literature, they originate from, and are
useful in, a variety of science and engineering fields.

1202 R. C. Holte and B. Y. Choueiry Artificial intelligence

5. THEORIES OF ABSTRACTION

Theorem proving, where an abstract proof is used to
guide building a concrete proof, is one of the early areas
of AI where a formal definition and characterization of the
abstraction process has been attempted (Plaisted 1981;
Cremonini et al. 1990; Giunchiglia & Walsh 1992;
Nayak & Levy 1995). These efforts have led to the devel-
opment of formal theories of abstraction, which fall into
two categories, semantic (Nayak & Levy 1995) and syn-
tactic (Giunchiglia & Walsh 1992). Typically, these
theories are restricted to logical systems and to techniques
that preserve consistency and correctness of proofs.

These logical theories fail to provide the vocabulary
necessary to characterize the practical aspects of the
abstraction process. Another shortcoming is that they
ignore the relevance, in the abstraction process, of the
problem-solving goals, although one notable exception to
this is the formal theory of behaviour-preserving equival-
ence defined by Lowry (1989). The impact of abstraction
on the efficiency of the reasoning process and the quality
of its outcome has led to the proposal of ‘practical’
theories of abstraction (Weld & Addanki 1990; Knoblock
et al. 1991; Struss 1993; Davis 1995; Choueiry et al.
2003). For example, the theory proposed in Choueiry et
al. (2003) attempts to clearly specify and precisely relate
the elements in the problem that are being abstracted
away. It also provides the means to express logical, quanti-
tative and qualitative criteria to assess the success of the
abstraction process.

An extensive discussion of the theories of abstraction
in AI can be found in this special issue in the article by
Zucker (2003).

6. CONCLUSIONS

This paper has surveyed the most common notions of
abstraction currently in use in three areas of AI. Even in
a single area, there are diverse methods of abstraction, and
different methods for using the information produced by
abstraction. If there is a theme common to all of these it is
the very general idea of reducing a problem by eliminating,
shrinking, grouping or simplifying one or more of the vari-
ous elements in the problem definition.

In all the methods surveyed, the goal of abstraction is
to speed up a computation. Only in special cases is speed-
up guaranteed. Most often, it is impossible to predict
ahead of time whether the computational overheads
involved in creating and using abstractions are greater or
smaller than the computational savings that result from
exploiting the information produced by the abstraction.

Systems that use abstractions have varying degrees of
autonomy in terms of the abstractions they use. Some sys-
tems are able to use abstractions provided by humans, but
are not able to generate the abstractions (e.g. Culberson &
Schaeffer 1996; Korf 1997). Other systems are able to
build abstractions, in some cases taking into account
dynamically occurring circumstances during their
execution, but are very specific in the abstractions they
build and the conditions under which abstractions are
built. Choueiry & Davis (2002) is an example of this type
of system. Finally, there are systems that search for good
abstractions in a broad, and sometimes very diverse, fam-

Phil. Trans. R. Soc. Lond. B (2003)

ily of possible abstractions (e.g. Korf 1980; Prieditis 1993;
Hernádvölgyi 2001). Even the most autonomous of these
systems depends, to a significant extent, on being given
an initial problem formulation that is amenable to the
types of abstraction the system employs. Thus, there is
still a need for humans to apply their creative ingenuity
and insight to creating a good problem formulation,
although it is hoped that by automating abstraction and
other reformulation techniques the burden on humans has
been reduced.

R.C.H. thanks the Natural Sciences and Engineering Research
Council of Canada for the financial support that made this
research possible. B.Y.C. is supported by a CAREER award
no. 0133568 from the National Science Foundation.

REFERENCES

Bacchus, F. & Yang, Q. 1994 Downward refinement and the
efficiency of hierarchical problem solving. Artif. Intell. 71,
43–100.

Backofen, R. & Will, S. 1999 Excluding symmetries in con-
straint-based research. In 5th Int. Conf. Principles and practice
of constraint programming, CP ’99, Alexandria, VA, USA,
October 1999. Lecture notes in artificial intelligence 1713 (ed. J.
Jaffar), pp. 73–87. Springer.

Bistarelli, S., Codognet, P. & Rossi, F. 2000 An abstraction
framework for soft constraints and its relationship with con-
straint propagation. In 4th Int. Symp. on Abstraction,
Reformulation and Approximation, SARA 2000, Horseshoe
Bay, USA, 26–29 July 2000. Lecture notes in artificial intelli-
gence 1864 (ed. B. Y. Choueiry & T. Walsh), pp. 71–86.
Springer.

Brown, C. A., Finkelstein, L. & Purdom Jr, P. W. 1988 Back-
track searching in the presence of symmetry. In Applied
algebra, algebraic algorithms and error-correcting codes (ed. T.
Mora), pp. 99–110. Springer.

Choueiry, B. Y. & Davis, A. M. 2002 Dynamic bundling: less
effort for more solutions. In 5th Int. Symp. on Abstraction,
Reformulation and Approximation, SARA 2002, Kananaskis,
Alberta, Canada, 2–4 August 2002. Lecture notes in artificial
intelligence 2371 (ed. S. Koenig & R. Holte), pp. 64–82.
Springer.

Choueiry, B. Y. & Noubir, G. 1998 On the computation of
local interchangeability in discrete constraint satisfaction
problems. In Proc. AAAI-98, Madison, WI, pp. 326–333.
(Revised version KSL-98-24, ksl-web.Stanford.edu/KSL
Abstracts/KSL-98-24.html.)

Choueiry, B. Y. & Walsh, T. (eds) 2000 Proc. 4th Int. Symp.
on Abstraction, Reformulation and Approximation, SARA 2000,
Horseshoe Bay, USA, 26–29 July 2000. Lecture notes in arti-
ficial intelligence 1864. Springer.

Choueiry, B. Y., Faltings, B. & Weigel, R. 1995 Abstraction
by interchangeability in resource allocation. In Proc. 14th
IJCAI, Montreal, Quebec, Canada, 20–25 August 1995. pp.
1694–1701. Morgan Kaufmann.

Choueiry, B. Y., Iwasaki, Y. & McIlraith, S. 2003 Towards a
practical theory of reformulation for reasoning about physi-
cal systems. Artif. Intell. (Submitted.)

Cremonini, R., Marriott, K. & Søndergaard, H. 1990 A gen-
eral theory of abstraction. In Proc. 4th Aust. Joint Conf. Arti-
ficial Intelligence, Australia, pp. 121–134.

Culberson, J. C. & Schaeffer, J. 1994 Efficiently searching the
15-puzzle. Technical report, Department of Computing
Science, University of Alberta.

Artificial intelligence R. C. Holte and B. Y. Choueiry 1203

Culberson, J. C. & Schaeffer, J. 1996 Searching with pattern
databases. In Advances in artificial intelligence, 11th Biennial
Conf. of Canadian Society for Computational Studies of Intelli-
gence, AI ’96, Toronto, Canada, 21–24 May 1996. Lecture
notes in artificial intelligence 1081 (ed. G. McCalla), pp. 402–
416. Springer.

Culberson, J. C. & Schaeffer, J. 1998 Pattern databases. Com-
put. Intell. 14, 318–334.

Davis, E. 1995 Approximation and abstraction in solid object
kinematics. Technical report TR706. New York University.

Doran, J. E. & Michie, D. 1966 Experiments with the graph
traverser program. Proc. R. Soc. Lond. A 294, 235–259.

Drummond, C. 1999 A symbol’s role in learning low level con-
trol functions. PhD thesis, Computer Science Department,
University of Ottawa, Canada.

Drummond, C. 2002 Accelerating reinforcement learning by
composing solutions of automatically identified subtasks. J.
Artif. Intell. Res. 16, 59–104.

Edelkamp, S. 2001 Planning with pattern databases. In Proc.
6th Eur. Conf. on Planning (ECP-01).

Ellman, T. 1993 Abstraction via approximate symmetry. In
Proc. 13th IJCAI, Chambéry, France, pp. 916–921.

Falkenhainer, B. & Forbus, K. D. 1991 Compositional mode-
ling: finding the right model for the job. Artif. Intell. 51,
95–143.

Fillmore, J. P. & Williamson, S. 1974 On backtracking: a com-
binatorial description of the algorithm. SIAM J. Comput. 3,
41–55.

Freuder, E. C. 1991 Eliminating interchangeable values in
constraint satisfaction problems. In Proc. AAAI-91, Anah-
eim, CA, pp. 227–233.

Freuder, E. C. & Sabin, D. 1995 Interchangeability supports
abstraction and reformulation for constraint satisfaction. In
Symp. on Abstraction, Reformulation and Approximation,
SARA ’95, Ville d’Esterel, Canada, August 1995.

Gasching, J. 1979 A problem similarity approach to devising
heuristics: first results. In Proc. 11th IJCAI, pp. 301–307.

Gent, I. P. & Smith, B. M. 2000 On reformulation of con-
straint satisfaction problems. In Proc. 14th ECAI, Berlin, pp.
599–603.

Giunchiglia, F. & Walsh, T. 1992 A theory of abstraction.
Artif. Intell. 57, 323–389.

Glaisher, J. 1874 On the problem of the eight queens. Phil.
Mag. Ser. 4 48, 457–467.

Gruber, T. B. & Gautier, P. O. 1993 Machine-generated
explanations of engineering models: a compositional mode-
ling approach. In Proc. 13th IJCAI, Chambéry, France, pp.
1512–1508.

Guida, G. & Somalvico, M. 1979 A method for computing
heuristics in problem solving. Info. Sci 19, 251–259.

Hart, P., Nilsson, N. J. & Raphael, B. 1968 A formal basis for
the heuristic determination of minimum cost paths. IEEE
Trans. Syst. Sci. Cybernet. 4, 100–107.

Haselböck, A. 1993 Exploiting interchangeabilities in con-
straint satisfaction problems. In Proc. 13th IJCAI, Chambéry,
France, pp. 282–287.

Hentenryck, P. V. (ed.) 2002 Proc. 8th Int. Conf. on Principle
and Practice of Constraint Programming (CP ’02), Ithaca, NY,
USA, 9–13 September 2002. Lecture notes in computer science
2470. Springer.

Hernádvölgyi, I. T. 2001 Searching for macro operators with
automatically generated heuristics. In Advances in Artificial
Intelligence—Proc. 14th Biennial Conf. Can. Soc. Comput.
Stud. Intell. (LNAI 2056), pp. 194–203.

Holte, R. C., Mkadmi, T., Zimmer, R. M. & MacDonald, A. J.
1996 Speeding up problem-solving by abstraction: a graph-
oriented approach. Artif. Intell. 85, 321–361.

Phil. Trans. R. Soc. Lond. B (2003)

Huang, X. 1994 Reconstructing proofs at the assertion level.
In Proc. 12th Conf. on Automated Deduction, Nancy, France,
26 June–1 July 1994 (ed. A. Bundy), pp. 738–752. Springer.

Hubbe, P. D. & Freuder, E. C. 1989 An efficient cross product
representation of the constraint satisfaction problem search
space. In Proc. AAAI-92, San Jose, CA, pp. 421–427.

Knoblock, C. A. 1991 Automatically generating abstractions
for planning. Artif. Intell. 68, 243–302.

Knoblock, C. A., Tenenberg, J. D. & Yang, Q. 1991 Charac-
terizing abstraction hierarchies for planning. In Proc. AAAI-
91, Anaheim, CA, pp. 692–697.

Koenig, S. & Holte, R. C. (eds) 2002 Proc. 5th Int. Symp. on
Abstraction, Reformulation and Approximation, SARA 2002,
Kananaskis, Alberta, Canada, 2–4 August 2002. Lecture notes
in artificial intelligence 2371. Springer.

Korf, R. E. 1980 Toward a model of representation changes.
Artif. Intell. 14, 41–78.

Korf, R. E. 1997 Finding optimal solutions to Rubik’s Cube
using pattern databases. In Proc. 14th Nat. Conf. on Artificial
Intelligence (AAAI-97), pp. 700–705.

Levy, A. Y., Iwasaki, Y. & Fikes, R. 1997 Automated model
selection for simulation based on relevance reasoning. Artif.
Intell. 96, 351–394.

Lowry, M. R. 1989 Algorithm synthesis through problem
reformulation. PhD thesis, Computer Science Department,
Stanford University, CA, USA.

McCarthy, J. 1964 A tough nut for proof procedures. Stanford
Artificial Intelligence Project memo 16.

Mallory, R. S., Porter, B. W. & Kuipers, B. J. 1996 Compre-
hending complex behavior graphs through abstractions. In
10th Int. Workshop on Qualitative Physics. AAAI Technical
Report WS-96-Ql, Fallen Leaf Lake, CA, pp. 137–146.

Minsky, M. 1961 Steps toward artificial intelligence. Proc. IRE
49, 8–30.

Mostow, J. & Prieditis, A. 1989 Discovering admissible heuris-
tics by abstracting and optimizing: a transformational
approach. In Proc. 11th IJCAI, pp. 701–707.

Mozetič, I. 1991 Hierarchical model-based diagnosis. Int. J.
Man–Machine Stud. 35, 329–362.

Muggleton, S. 1988 A strategy for constructing new predicates
in first order logic. In Proc. 3rd Eur. Working Session on
Learning (ed. D. Sleeman), pp. 123–130. London: Pitman
Publishing.

Nadel, B. 1990 Representation selection for constraint satisfac-
tion: a case study using N-queens. IEEE Expert 5, 16–24.

Nayak, P. P. & Joskowicz, L. 1996 Efficient compositional
modeling for generating causal explanations. Artif. Intell. 83,
193–227.

Nayak, P. P. & Levy, A. Y. 1995 A semantic theory of abstrac-
tions. In Proc. 14th IJCAI, Montreal, Canada, pp. 196–203.

Newell, A. 1965 Limitations of the current stock of ideas about
problem solving. In Electronic information handling (ed. A.
Kent & O. E. Taulbee), pp. 195–208. Spartan Books.

Pearl, J. 1984 Heuristics: intelligent search strategies for computer
problem solving. Reading, MA: Addison-Wesley.

Plaisted, D. A. 1981 Theorem proving with abstraction. Artif.
Intell. 16, 47–108.

Polya, G. 1945 How to solve it: a new aspect of mathematical
method. Princeton University Press.

Prieditis, A. E. 1993 Machine discovery of effective admissible
heuristics. Machine Learn. 12, 117–141.

Puget, J.-F. 1993 On the satisfiability of symmetrical con-
strained satisfaction problems. In ISMIS ’93, pp. 350–361.

Rickel, J. & Porter, B. 1994 Automated modeling for answer-
ing prediction questions: selecting the time scale and system
boundary. In Proc. of AAAI-94, Seattle, WA, pp. 1191–1198.

Sacerdoti, E. D. 1974 Planning in a hierarchy of abstraction
spaces. Artif. Intell. 5, 115–135.

1204 R. C. Holte and B. Y. Choueiry Artificial intelligence

Saitta, L. & Zucker, J.-D. 1998 Semantic abstraction for con-
cept representation and learning. In Working notes of the
Symp. on Abstraction, Reformulation, and Approximation
(SARA ’98), Pacific Grove, CA, pp. 103–120.

Shahar, Y. 1997 A framework for knowledge-based temporal
abstraction. Artif. Intell. 90, 79–133.

Shannon, C. 1950 A chess-playing machine. Sci. Am. 182,
48–51.

Simon, H. A. 1981 The sciences of the artificial, 2nd edn. Cam-
bridge, MA: MIT Press.

Struss, P. 1993 On temporal abstraction in qualitative reason-
ing (a preliminary report). In Proc. 7th Int. Workshop on
Qualitative Reasoning about Physical Systems, Orcas Island,
WA, pp. 219–227.

Weigel, R. & Faltings, B. 1997 Structuring techniques for con-
straint satisfaction problems. In Proc. 15th IJCAI, Nagoya,
Japan, pp. 418–423.

Weigel, R., Faltings, B. & Choueiry, B. Y. 1996 Context in
discrete constraint satisfaction problems. In Proc. 12th Eur.

Phil. Trans. R. Soc. Lond. B (2003)

Conf. on Artificial Intelligence, ECAI ’96, Budapest, Hungary,
pp. 205–209.

Weld, D. S. & Addanki, S. 1990 Task-driven model abstrac-
tion. In 4th Int. Workshop on Qualitative Physics, Lugano,
Switzerland, pp. 16–30.

Zucker, J.-D. 2003 A grounded theory of abstraction in arti-
ficial intelligence. Phil. Trans. R. Soc. Lond. B 358, 1293–
1309. (DOI 10.1098/rstb.2003.1308.)

Zucker, J.-D., Bredèche, N. & Saitta, L. 2002 Abstracting vis-
ual percepts to learn concepts. In Proc. 5th Int. Symp. on
Abstraction, Reformulation and Approximation, SARA 2002,
Kananaskis, Alberta, Canada, 2–4 August 2002. Lecture notes
in artificial intelligence 2371 (ed. S. Koenig & R. Holte), pp.
256–273. Springer.

GLOSSARY

AI: artificial intelligence
CSP: constraint satisfaction problem

