A Step towards a New Test for Learnability of Machine Learning*

Hiroshige INAZUMI!

Abstract

Based on PAC learning, A new test for learnability is
proposed from the viewpoint of rate distrotion theroy.
The criterion depends on the potential property of
concept classes, which shows the relationship between
sample complexity and accuracy.

1 Introduction

Recent Machine Learning frameworks, not demanding
that the hypothesis produced by learning algorithm
will be exactly correct, have provided much interest
in the research fields of Information Theory. The main
problem of Information Theory is to analyze how to
realize the reliable and effective communications as-
suming some noisy conditions, i.e. uncertain sources or
channels. In the past, Information Theory has pro-
vided Machine Learning with some kinds of criteria
{(e.g. entropy) or biases (e.g. minimum description
length; MDL) [1].

The purpose of this paper is not to get perfect anal-
ogy between framework of Machine Learning and that
of Information Theory, but to provide reciprocal ac-
tions with each other by partial analogy between them,
i.e. provide some effective information and suggestion
with some Machine Learning strategies.

We consider Valiant’s PAC(Probably Approximately
Correct) learning framework [2}], and FAC(Frequently
Approximately Correct) learning framework intro-
duced by Diettreigh [3], which is a little defferent from
PAC learning framework. In learning a class C of con-
cepts from examples, a single target concept is selected
froin C and we are given a finite sequence, each labeled
“1" if it is in the target concept (a positive example)
and "0 if it is not (a negative example). This set is a

*This work was partially supported by the Ministry of Educa-
tiors under a Grant-in-Aid for Scientific Research No.06680364,
and a grant from the Research Institute of Aoyama Gakuin
University

fCollage of Science and Enginering, Aoyama Gakuin Univer-
sity. 6-16-1 Chitosedai, Setagaya-ku, Tokyo 157 Japan

‘Faculty of Engineering, Kobe University, !-1 Rokkodai,
Nacda, Kobe 657 Japan

*Faculty of Science. University of Ottawa, 150 Louis Pas-
teur /Priv., Ottawa, Ontario. Canada K1IN 6N5

Kin-ichiro TOKIWA }

Robert C. HOLTE §

training set from instance space, which is also called a
sample of the target concept. A learning function for
C is a function that, given a large enough randomly
drawn sample of any target concept in C, returns a re-
gion (a hypothesis) that is with high probability a good
approximation to the target concept. In PAC learning
model, a hypothesis must be guessed with arbitrarily
small error with arbitrarily high probability for a large
enough sample size, no matter which concept from C
we are trying to learn. The bounds on the sample size
must be independent of the underlying distribution P.
Necessary and sufficient conditions on a class of con-
cepts C for the existence of a learning function satisfy-
ing the above conditions are given by the simple com-
binatorial parameter called the Vapnik-Chervonenkis
(VC) dimension of the class C of the concepts [4, 5, 6].

Then we consider the following arrangement of the
previous framework.

¢ In learning a class C of concepts, let training set
be the set of samples from the compressed instance
space. Given compressed space, how much accu-
racy is guaranteed for guessing any target concept.

We treat trade-off ralationship between compression-
rate and error-rate (=1l-accuracy) in rate-distortion
theory (7], by which the static and potential property
of the model can be analyzed. If the source informa-
tion is compressed under the source entropy through
coding procedure, the source information will not be
exactly represented after the decoding, i.e. with some
errors. Such kind of errors is called distortion. The
purpose of rate-distortion theory is to show the com-
pression bounds, R, assuming an average distortion,
D, and also show the distortion bounds assuming some
fixed compression rate. Such kind of bound is shown
as rate-distortion function, R(D), which is monotone
decreasing and downwards convex function.

From the above approach, training set from com-
pressed instance space is regarded as codewords. In
this case, compression-rate is regarded as sample size.
If, however, compression process of instance space is
allowed to be re-arranged e.g. any combination of ex-
amples or re-construction of attributes. this approach
will be closest to the condition of rate-distortion the-
ory. Basically, assuming the same instance space and
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the same accuracy, 1 — D, if compression-rate, R; (D)
is lower than Ry(D), the former is potentially better
than the latter, which guarantees the existence of bet-
ter learning algorithm in the former than the latter.

What is the potential property of the concepts
space? When the large scale problems are assumed,
the system efficiency is defined by the normalized rate-
distortion function R(D,n)/R(0,n) < 1,0 < D <
Dpoz(n) < 1, with the parameter of the problem
size, n, e.g. the number of attributes in the case of
Boolean concepts. The behaviour of the system effi-
ciency will be evaluated as the system size becomes in-
finite. When the system efliciency becomes zero, such a
system will be termed elastic or trivial elastic, which as-
sures the existence of algorithms, assuming sufficiently
large problem size, that a target concept can be guessed
with a given accuracy from a highly compressed in-
stance space. In elastic cnodition R(D,n)/R(0,n)
shows highly divergence speed for the problem size,
n, and in trivial elastic condition Dy,q..(n) also shows
highly divergence speed for the problem size [8, 9]. As
a result, we evaluate the potential property of the class
of concepts by R(D,n)/R(0,n) and Dyee(n).

As examples,the theoretical bounds on approximate
learning ofsome concept classes are proposed by using
the following rate-distortion theoretical framework:

1. The problem is how to compress instance space in
order to guess target concepts with a given accu-
racy.

. The average compression-rate of instance space
with a given accuracy is regarded as the minimum
mutual information between the original instance
space and the compressed one with a given error-
rate.

. The rate-distortion function, showing the trade-
offs between compression-rate and error-rate,
identify the potential property of the class of con-
cept.

. The behavior in the limit of the normalized rate-
distortion functions shows either elastic, trivial
elastic, or inelastic condition. In the case of elastic
or trivial elastic condition, the divergence speed of
R(D.n)/R(0,n) or Dyqz(n) is evaluated.

Considering the previous works, it is shown that the
sample size function satisfying PAC learnability is de-
rived from VC dimension of the class of the concepts.
Although not refering strictly the sample size and
learning algorithms, our criterion, R(D,n)/R(0,n) and
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D(n), also shows the the potential property of the con-
cept class from the viewpoint of the relationship be-
tween sample complexity and accuracy. In the future,
the classification of learnability for the class of concepts
will be realized by using our criterion.

2 PAC Learnability

The following notions of learning functions and learn-
ability is used in PAC learning framework [2, 6].

Definitions: A concept class is nonempty set C C
2% of concepts. It is assumed that X is a fixed set,
either finite, countably infinite, [0,1]". or E" (Eu-
clidean n dimensional space) for some 7. > 1. In the
latter cases, we assume that each ¢ € C is a Borel
set. X™ denotes the m-fold Cartesian product of X.
For T = (z1,%2,....Tm) € X™z; € X,1 <1 < m,
the m-sample of ¢ € C generated by % is given by
smpe(Z) = ({71, 1(z1)), (1:27 I(x2)) ., (T, Ic(zm)))-
I.(z) denotes the indicator function for ¢ on X, that is,
I(z:) =1, if x; € ¢, I.{z;) =0, otherwise. The sample
space of C, denoted S¢, is the set of all m-samples over
alceCandallze X™, forallm > 1.

Ac nu denotes the set of all functions 4 : S — H,
where H is a set of Borel sets on X. H is called the
hypothesis space. Elements in H are called hypothe-
ses. The hypothesis space is usually and also through-
out this paper assumed to be C itself, although in
some cases it is computationally advantageous to al-
low A to approximate concepts in C using hypotheses
from a different class H. A € Ac gy is consistent if
its hypothesis always agrees with the sample, that is,
whenever h = A((z1,a1}, ..., {Tm,am)) then for all i
1 < i £ m,a; = I.(z;). For any learning function
A € Ac g, probability distribution P on X, ¢ € C,
and ¥ € X™, let cAh denotes the symmetric differ-
ence of the target concept and the hypothesis, the er-
ror of A for concept c on T with respect to P is given
by errora.p(Z) = P(cAh), where h = A(smp.(%)).
Thus, A’s error is measured as the probability of the
region that forms the symmetric difference between
the target concept and A’s hypothesis, which is just
the probability that A’s hypothesis will be inconsis-
tent with the target concept on randomly drawn point
with respect to P.

Let m(e,8) be an integer-valued function of € and
6 for 0 < ¢,6 < 1 and, P be a probability distribu-
tion on X, A € Ac,y is a learning function for C with
sample size m(e,8) if for all 0 < ¢,6 < 1 and for all
c € C,P™e)(W) < 6, where W = {i € X .
errora . p(Z) > €}. It is insisted that using a randomly
drawn sample of size m(e, &) of any target concept in



C. A produces, with probability at least 1 — §, a hy-
pothesis in H with error no more than e. If such an
A exists, it is said that C is uniformly learnable by
H under the distribution P. The smallest sample size
m(e, é) is called the sample complexity of A.

Definitions: Given nonempty concept class C C 2X
and a set of points S C X. IIc(S) denotes the set of
all subsets of S that can be obtained by intersecting S
with a concept in C, that is, II¢(S) = {SNc:ce C}.
If o (S) = 25 then it is said that S is shattered by
C. The Vapnik-Chervonenkis (VC) dimension of C is
the cardinality of the largest finite set of points 5 C X,
that is shattered by C. If arbitrarily large finite sets are
shattered, the VC dimension of C is infinite. For any
integer m > 0,IIg(m) = max(|ll¢(S)|) over all S € X
of cardinality m. That is, VC dimension of C can be
defined as the largest integer d such that Ilc(d) = 2¢,
or infinity.

Let C be any finite concept class. Then since it re-
quires 22 distinct concepts to shatter a set of d points,
no set of cardinality larger than log|C| can be shat-
tered. Hence, the VC dimension of C is at most log|C|.

According to the above definitions, It is shown that
a characterization of polynomial learnabiblity with re-
spect to domain dimension. Let the concept classes
C, C 2F" be all domains of Euclidean dimension
n > 1 and for each n, and C, C 2{%!}" be all do-
mains of Boolean dimension n > 1 and for each n.
It is shown that the concept classes C,,n > 1, are
polynomially learnable if and only if the VC dimen-
sion of C,, grows polynomially in n and there exists a
polynomial time probabilistic algorithm for finding a
consistent hypothesis in C, for any sample of a tar-
get concept in Cy,. Especially in the Boolean case, the
concept classes C, C 2101}1" 'n > 1, are polynomially
learnable if and only if log|C\,| grows polynomially in n
and there exists a polynomial time probabilistic algo-
rithm for finding a consistent hypothesis in C, for any
sample of a target concept in C,,. From the other as-
pects, a sufficient condition of polynomial learnability
with respect to target complexity based on the princi-
ple of preferring the simpler hypothesis, usually called
Ocam’s Razor. This result shows that if we can effi-
ciently produce a hypothesis that explains the sample
data, and is sufficiently more compact than the sample
data, then we can feasibly learn, which may be inter-
preted as showing a relationship between a kind of data
compression and learning. Note that this information
theoretic approach is based on Minimum Description
Length (MDL) of source coding theorem without dis-
tortion.

3 Rate Distortion Theory

The problem is formalized using the following source
model. Let U = {uy,us,...,u,} be a discrete mem-
oryless source X, and py,p2,...,pn be their proba-

bilities. We assume throughout this paper that n
is finite and that p; > O for each i,i = 1.2,...,n.
The source output is a sequence zp,rz,... of inde-

pendent selections from the given alphabet with their
given probabilities. The source sequence is to be rep-
resented at the destination by a sequence of letters
Y1, Y2, .- -, each selected from a destination alphabet,
V = {v,vs,...,Um}, where m is finite. Let p; be
the a priori probability of the input alphabet u;, and
P(j|i) be the transition probability of the output al-
phabet v;. Let p(i, §) be the distortion measure which
is defined for i = 1,2,...,n,j = 1,2,...,m, assigning
a numerical value to the distortion, if source alpha-
bet u; is represented at the destination by alphabet
vj. Then both an average mutual information and an
average distortion are determined, and the rate distor-
tion function, R(D), of the source relative to the given
distoriton measure is defined as

Pl

R(D) = P(jﬁl)iélPD - pi P(jli) log m (1)
where
Pp = {P(li) | 3_pPGl)ei,7) < D} (2)

ij

The minimization in (1) is over all assignments of tran-
sition probabilities subject to the constraint that the
average distortion is less than or equal to the average
distortion, D. Regardless of what processing is done,
the average distortion must exceed D, if a channel with
capacity less than R(D) nats per source symbol con-
nects the source to the destination for given D. It is
reasonable to interpret R(D) as the rate of the source,
in nats per symbol, relative to the fidelity criterion D.

Considering the above results, some general peoper-
ties of this function have been summarized as follows.
First of all, R(D) is nonnegative, nonincreasing, and
convex in D. The nonnegativeity is obvious, since the
average mutual information is nonnegative. Observe
next that the minimization in (1) is over a constraint
set which is enlarged as D is increased. Thus the re-
sulting minimum R(D) is nonincreasing with D. Next,
let Doz be the smallest D for which R(D) = 0, we
can calculate D, from

Dnlal‘ = nll.lnz:pip(z"])' (3)
7
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It is noted that the smallest possible value for the aver-
age distortion is zero and is achieved by mapping each
letter u; of the source alphabet into an output letter v,
for which p(i, j) = 0. For D < 0, R(D) is undefinded,
since by definition result, p(i, 7) > 0.

For a given source U and destination alphabet V, a
source code of M code words with block length L is
defined as a mapping from the set of source sequences
of length L into a set of M code words, where each code
word, y; = (Y1, Y2, - - -, ¥ir) is a sequence of L letters
from the destination alphabet. The average distortion,
dy,, per letter of a source code is given by

di =7 Y PL)p(x,y(x) @

where Pj(x) is the probability of a source sequence
x = (Z1,%2,...,.21), and y(x) is the code word that x
is mapped into such that

L
plx.y) =Y pla, y). (5)
k=1

At the point to find how small d; can be made for a
given L and M, and we shall attempt to analyze the
behavior of a randomly chosen set of code words. Let
P(j]i) be a given set of transition probabilities between
source and destination letters. Considering a discrete
memoryless channel with these transition probabilities
as a test channel, if P(j|i) achieves R(D) for a given
D, then the associated test channel will achieve R(D)
for D. The output probabilities, p(j), for given test
channel, are

pG) =D _P(li).j=1,2,...,m. (6)

For any given test channel, we consider an ensemble of
source codes in which each letter of each code word is
chosen independently with the probability assignment
p(j). For a given set of code words y;,1 =1,2,...,M ,
in the ensemble, each source sequence x will be mapped
into that code word y; for which p(x,y;:) is minimized
over 1.

Considering simultaneously two different probabil-
ity measures on the input and the output sequences,
one is the test channel ensemble and the other is
the random coding ensemble. For the test chan-
nel ensemble, the probability measure on input se-
quences X = (r1,Z2,...,2r) and output sequences
y = (y1,¥2.---,yL) Is given by Pr(x)Pr(y|x) where

L
1) [ Plew), (7
k=1

L
P(ylx) = T] Pyrlax),
k=1

(8)

L
Puly) =Y Pu(x)Pu(ylx) = [] Pwe). (9
X k=1

In these equations, P(xx) and P(yx|zx) are the source
and test channel probabilities respectively. The other
ensemble is the ensemble of codes in which M code
words are independently chosen with the probability
assignment Py, (y), the source sequence is chosen with
the same assignment P (x) as above, and for each code
in the ensemble, x is mapped into that y;, denoted
y(x) , that minimizes p(x,y;) over 1 <i < M.

Following the above condition, we state both the neg-
ative and positive parts of source coding theorem.

Theorem 1 [7]: Let R(D) be the rate distortion
function of a discrete memoryless source with a finite
distortion measure. For any D > 0, any € > 0, and any
sufficiently large block length L, there exists no source
code with M < exp{LR(D)} code words for which the
average distortion per letter satisfies d;, < D +e¢. From
the other aspect, there exists a source code with M <
exp{L(R(D) + €)} code words for which the average
distortion per letter satisfies dp, < D + €.

4 A New Test for Learnability

The interests of PAC learnability, e.g. sample com-
plexity and learning algorithms, focuses not guessing
of each target concept but the class of concepts. We
also analyze learnability of concept classes from the
viewpoint of their potential property.

Considering instance space, the sample space Scr, the
set of all m-samples over all ¢ € C for all 1n > 1 can be
regarded as the compressed instance space. In order
to evaluate the compressed instance space using rate
distortion theory, coding procedure must be defined to
learning process.

Difinition: Let X be the instance space, | X|(=
N) be the cardinality of X, and |C|(= K) be
the cadinality of C. The m-sample of z; €
X generated by C is given by smp, (C) =
({1, Iz, (1)), (c2, Izi (c2))s - - - 4 {eK, I:ci(CK»)vcj € C,
where I;.{(c;) = 1, if z; € ¢;,1Iz,(¢;) = 0, otherwise.
We define source and destination alphabet of the class
C of concepts to be I, (C),i=1,2,..., N, and distor-
tion measure of the class C' of concepts, p(i,j), to be
21:{:1 |1z, (cx) — I, (ck)|/ K. Then coding procedure is
as follows.

source—encoding ., source—decoding
C — Se — H
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{Le (O}~ L, (O) a1 } = AL, (C)Fe )

where A is the guessing function, that is, A : S¢c — H.

For example, assuming that instance space X con-
sists of 4 points, x,, z3, I3, L4, the sample space S¢ is
the set of all 2-samples, and block code length L is 16,
the following mapping is one of the coding procedure
with distortion. That is, practically, source sequences
of length 16 means 4-times guessing processes to tar-
get condcepts without distortion, and source code of
length 16 means 8-times guessing processes to target
concepts with some distortion. Note that the average
distortion can be counted after decoding process by the
guessing function A.

{x1I2x3z4zlx2$31‘4I1sz3:t4.’171 .1:21?3.1:4}

{11121‘] 132231241'324.’51$3$!.’1731'2.’124172.’1,'4}

In this case, block code length means the frequency of
learning, and sufficiently large block code length would
realize the estimation of the average performance of
learnability of a given concept class for any sample
size. Therefore, rate distortion function would clarify
the potential property of the concept class regardless
learnig algorithms.

Practically, rate distortion function can be derived
for any alphabet size, N, as follows. If u, and v, are
functions of s such that

N

> 30(i3) ¢ «
Ug 2 lg%xNZ;e y§ S 07 (10)
=
N
< mi $0(i.f) ¢ < 11
vs__lngnNi—le ,8 <0, (11)

and both of them are differentiable and log-convex,
then a lower bound and a upper bound to R(D), R (D)
and Ry (D), are derived as the following set of para-
metric equations.

Ry (D)=1logN + sD —logu,, D =

Is (12)

log u,,

d
Ry (D) =logN +sD —logv,, D = Is-logv,. (13)

Ezample 1: Let X be the real line and let C be
the set of all intervals(open or closed) on X. Then
given any set S consisting of two points z,x; € X, we
can find concepts ¢y, c2,¢3,¢4 € C such that ¢; NS =
{r1},canNS = {z2},e3NnS =0, and c4N S. If S consists
of three points z; < x5 < z3, then there is no concept
¢ = C that contains z; and z3 but not z9. Thus the
above problem is a typical case that VC dimension of
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C is 2. If, however, N-points z1,z2,..., N € X, are
considered, we can find {C| = 2N concepts. When, for
example, N = 4 we show the input alphabet as follows.

IL,(C) = (00001111)
I,(C) = (00010111)
I,(C) = (00110011)
L,(C) = (01110001)

To calculate the average distortion, the distortion ma-
trix, {p(i, 5)], must be derived. The j-th column of the
distoriton matrix is

[ G=1)/N \
:
0
1

\ V=) )

and taking z = e*/N,
W= bz ltzt 2N

A lower bound to v} independent on j can be derived,

such that
12N

1-=2

vi>l+z4--+2V 1= = v,
since z* > zN~t for i,j > N, and 2z + --- + 297!
can be replaced by zV=7*! 4 ... 4 2N=1 Therefore,
assuming sufficiently large alphabet size N, asymptotic
behaviour of rate distortion function satisfies

~

t
R(D) = log —tD +log i—_——éj,t >0, (14)

N
N+t

where s )
D= ; E-t—-—l,t > (.

When the large scale problems are assumed, the sys-
tem efficiency is defined by the normalized rate dis-
tortion function R(D,N)/R(0,N). If for any D > 0,
R(D,N)/R(0,N) — 0 as N — o0, such a condition as-
sure that for given compression-rate, the reduction of
error-rate (= 1 — accuracy) is feasible, assuming large
scale problems. Note that the compression-rate is ap-
proximately equivalent to the sample size. Thus in ac-
cordance with the behaviour of the system efficiency,
the potential property can be classified by elastic if for
any D > 0 R(D,N)/R(O.N) - 0 as N — o , and



inelastic, if R(D,N)/R(0,N) > 0 as N — oo . Note
that trivial case , Dpge(N) = 0as N — 0 , is also
included in elastic, denoted trivial elastic. The elas-
ticity test was first proposed by J.Pearl in Question-
Answering Systems, which has evaluated the problems
of memory versus error trade-offs.

In Example 1, the system efficiency, such that

R(D,N) _log g5 —tD +log o=t
R(O,N) ~ log N

,t>0 (15)
shows elastic condition, i.e. the fastest possible rate of
convergence.

We consider several classes of Boolian concepts.

Example 2: Boolian Perfect Concept is the full class
of disjunctive normal form (DNF) consisting of any ar-
bitrary Boolean expression. Over n Boolian variables,
the size of the instance space N is 2™, and the size of
the concept class is 22". When, for example, n = 2, we
show the input alphabet as follows.

I, (Cgp) = (0000000011111111)
L,(Cgp) = (0000111100001111)
L,(Cgp) = (0011001100110011)
L,(Cpp) = (0101010101010101)
The average distortion is very simple, such that
v=1+ Y et =14 (2" 1)
i#]
Thus the system efficiency is derived as follows.
R(D,n) 1
—— = x1-2D,0< D<=, 1
R(O.7) 0sDb<y (16)

which shows inelastic.

Ezample 3: Boolian conjuctions is also typical Boo-
lian concept. Over n Boolian variables, the size of the
instance space N is 2™, and the size of the concept class
is 3, When, for example, n = 2, we show the input
alphabet as follows.

I, (Cpe) = (10000011111)
I.,(Cgc) = (10100101000)
I..(Cgc) = (11001000101)
I (Cgc) = (11110000010)

The average distortion, and the system efficiency is de-
rived as follows.

g = Z (") Q2@ =183

" 2
=0
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R(D,n)
R(0,n)
which shows trivial elastic.

From some examples, the concept classes with finite
VC dimension often show elastic. In the future, the
relationship between VC dimension and elasticity, and
convergence speed in the case of elastic condition will
be strictly analysed.

13 2
~1-2(3)"D, 0< oeeoQar
1-3(3)"D, 0D <2(3) a7

Acknowledgement

One of the authors wish to thank Prof.Stan Matwin
for providing nice conditions at Machine Learning
Group, University of Ottawa, and for his helpful com-
ments, and also to thank Prof.S. Hirasawa for providing
a chance to start a study of some applications of rate-
distortion theory and for his helpful comments.

References

[1] J.R.Quinlan,and R.L.Rivest, "Inferring decision
trees using the minimum description length prin-
ciple,” Informatin and computation, , vol.80,
pp.227-248, 1989.

L.G.Variant, " A theory of the learnable,” Com-
munications of ACM vol.27, no.11, pp.1134-1142,
1984.

[3] H.Almuallim and T.G.Dietterich, ”Learning with
many irrelevant features,” Proceedings of AAAI-

91, pp.547-552, 1991.
V.N.Vapnik and A.Ya.Chervonenkis, ”On the uni-

form convergence of relative frequencies of events
to their probabilities,” Theory of Probability and
its Applications, vol.16, no.2, pp.264-280, 1971.

4

[5]

V.N.Vapnik, Estimnation of Dependences Based on
Empirical Data. Springer Verlag, New York, 1982,

A.Blumer, A Ehrenfeucht, D.Haussler and
M.Warmuth, ” Learnability and the Vapnik- Cher-
vonenkis dimension,” Journal of ACM , vol.36,
no.4, pp.929-965, 1989.

(6]

[7] T. Berger, Rate Distortion Theory. Englewood

Cliffs, NJ: Prentice-Hall, 1971.

A.Crolotte and J.Pearl, "Elasticity conditions
for storage versus error exchange in question-
answering systems,” IEEE Trans. on Information
Theory, vol IT-25, no.6, pp.653-664, 1979.

(8]

[9] H.Inazumi, "Studies on the evaluations for infor-
mation systems based on rate distortion theory,”

Dr.Eng. dissertation, Waseda University, 1989.



