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Abstract 
Based on PAC learning, A new test for learnability is 
proposed from the viewpoint of rate distrotion theroy. 
The criterion depends on the potential property of 
concept classes, which shows the relationship between 
sample complexity and accuracy. 

1 Introduction 
Rtxent Machine Learning frameworks, not demanding 
t,hat the hypothesis produced by learning algorithm 
will be exactly correct, have provided much interest 
in the research fields of Information Theory. The main 
problem of Information Theory is to analyze how to 
realize the rehable and effective communications as- 
siiniing some noisy conditions, i.e. uncertain sources or 
channels. In the past, Information Theory has p r e  
vitied Machine Learning with some lunds of crit,eria 
(e.$<. ent,ropy:) or biases (e.g. minimum description 
length; MDL) [l]. 

The purpose of this paper is not to get perfect, anal- 
ogy between framework of Machine Learning and that 
of Information Theory, but to provide reciprocal ac- 
t ions with each other by partial analogy between them, 
i.e. provide some effective inforniation and suggestion 
wit.h some Machine Learning strategies. 

We consider Valiant,’s PAC(Probab1y Approxirriately 
Correct) 1earni.ng framework [2], and FAC(F’requent1y 
Approximately Correct } learning framework intro- 
tluc~eti by Diettreigh [3], which is a littale defferent, from 
PAC learning framework. In learning a class C of con- 
c q t s  from examples, a single target concept is selected 
from C and we are given a finite sequence, each labeled 
’. 1” if it is in the target concept (a  positive example) 
;ti111 “0” if it. is not, (a negative example). ‘This set is a 
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training set from instance space, which is also called a 
sample of the target, concept. A learning function for 
C is a function that, given a large enough randomly 
drawn sample of any target concept in G, returns a re- 
gion (a hypothesis) that is with high probability a good 
approximation to the target concept. In PAC learning 
model, a hypothesis must be guessed with arbitrarily 
small error with arbitrarily high probability for a large 
enough sample size, no matter which concept, from C 
we are trying to learn. The bounds on the sample size 
must be independent of the underlying distribution P. 
Necessary and sufficient conditions on a class of con- 
cepts C for the existence of a learning function satisfy- 
ing the above conditions are given by the simple com- 
binatorial parameter called the Vapnik-Chervonenkis 
(VC) dimension of the class G of the concepts (4, 5 ,  61. 

Then we consider t.he following arrangement of tho 
previous framework. 

0 In learning a class C of concepts, let training set 
be the set of samples from the compressed instance 
space. Given compressed space, how much accu- 
racy is guaranteed for guessing any target concept. 

We treat tradcLoff ralationship between compression- 
rate and error-rate (=l-accuracy) in rate-distortion 
thmry [7], by which the static and potential property 
of the model can be analyzed. If the source informa- 
tion is compressed under the source entropy through 
coding procedure, the source inforniation will not be 
ewctly represented after the decoding, i.e. with some 
errors. Such kind of errors is called distortion. The 
purpose of ratedistortion theory is to show the com- 
prcssion bounds, R, assuming an average distortion, 
D, and also show t,he distortion bounds assunling some 
fixed compression rate. Such kind of bound is shown 
as rate-distortion function, R ( D ) ,  which is riionot,one 
decreasing and downwards convex function. 

‘From the above approach. training set from coni- 
pressed instance space is regarded as codewords. In 
this case, compression-rate is regarded as sample size. 
If, however, compression process of instance space is 
allowed to be rearranged e.g.  any combination of ex- 
amples or re-construction of att,ributes. this itpproach 
will be closest to t,hc condition of r;it,e-distortion the- 
ory. Basically. assuming the same instance sjpace and 
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the same accuracy, 1 -- D, if compression-rate, RI (D) 
is lower than R2(D), the former is potentially better 
than the latter, which guarantees the existence of bet- 
ter learning algorithm in the former than the latter. 

What is the potential property of the concepts 
space? When the large scale problems are assumed, 
the system efficiency is defined by the normalized rate- 
distortion function R(D,n)/R(O,n) < 1,0 < D < 
Dmal(n) < 1, with the parameter of the problem 
size, n, e.g. the number of attributes in the case of 
Boolean concepts. The behaviour of the system effi- 
ciency will be evaluated as the system size becomes in- 
finite. When the system efficiency becomes zero, such a 
system will be termed elastic or trivial elastic, which as- 
sures the existence of algorithms, assuming sufficiently 
large problem size, t,hat a target concept can be guessed 
with a given accuracy from a highly compressed in- 
stance space. In elastic cnodition R ( D ,  n)/R(O, n) 
shows highly divergence speed for the problem size, 
n, and in trivial elastic condition D,,,(n) also shows 
highly divergeiice speed for the problem size [8, 91. As 
a result, we evaluate the potential property of the class 
of concepts by R(D, n)/R(O, n)  and Dmaz(n). 

As examples,the theoretical bounds on approximate 
learning ofsome concept classes are proposed by using 
the following rate-distortion theoretical framework: 

The problem is how to compress instance space in 
order to guess target concepts with a given accu- 
racy. 

The average compression-rate of instance space 
with a given accuracy is regarded as the minimum 
mutual information between the original instance 
space and the compressed one with a given error- 
rate. 

The ratedistortion function, showing the trade- 
offs between compression-rate and error-rate, 
identify the pot,ential property of the class of con- 
cept,. 

The behavior in the limit of the normalized r a t e  
distortion functions shows either elastic, trivial 
elastic, or inelastic condition. In the case of elastic 
or trivial elastic condition, the divergence speed of 
R( D. n)/R(O, U )  or Dmar(n) is evaluat,ed. 

D(n) ,  also shows the the potential property of the con- 
cept class from the viewpoint of the relationship be- 
tween sample complexity and accuracy. In the future, 
the classification of learnability for the class of concepts 
will be realized by using our criterion. 

2 PAC Learnability 

The following notions of learning functions aiid learn- 
ability is used in PAC learning framework [2, 61. 

Definztions: A concept class is noneinpty set C 
2x of concepts. It is assumed that X is a fixed set, 
either finite, countably infinite, [0,1]" or E" (Eu- 
clidean n dimensional space) for some I I  L 1. In the 
latter cases, we assume that each c E C is a Borel 
set. X'" denotes the m-fold Cartesian product of X. 
For 3 = ( ~ 1 ~ x 2  ,...,E,) E X m , x ,  6 X.1 I a 5 m, 
the m-sample of c E C generated by f is given by 

IC(.) denotes the indicator function for c' on X, that is, 
Ic(z,) = 1, if IC% E c, I c ( x , )  = 0 ,  otherwists. The sample 
space of C, denoted SC, is the set of ail ni-samples over 
all c E C and all 3 E Xm, for all m 2 1 

AC,H denotes the set of all functions A : SC + H ,  
where H is a set of Borel sets on X. H is called the 
hypothesis space. Elements in H are called hypothe- 
ses. The hypothesis space is usually and also through- 
out this paper assumed to be C itself, although in 
some cases it is computationally advantageous to al- 
low A to approximate concepts in C using hypotheses 
from a different class H .  A E AC,H is consistent if 
its hypothesis always agrees with the sample, that is, 
whenever h = A ( ( ~ ~ , a ~ ) , . . . , ( x ~ , u ~ ) )  then for all E ,  

1 5 z 5 m,a, = I C ( z , ) .  For any learning function 
A E A c , ~ ,  probability distribution P on X, c E C ,  
and Z E X'", let cAh denotes the symmetric differ- 
ence of the target concept and the hypothesis, the er- 
ror of A for concept c on 5 with respect to P is given 
by errorA,,,p(Z) = P(cAh), where h = A(sinpc(3)). 
Thus, A's error is measured as the probability of the 
region that forms the symmetric difference between 
the target concept and A's hypothesis, which is just 
the probability that A's hypothesis will be inconsis- 
tent with the target concept on randomly drawn point 
with respect to P. 

Let m(c,6) be an integer-valued function of E and 
6 for 0 < €,6 < 1 and, P be a probability distribu- 

smpC(3) = ((XI i I C ( x l ) ) ,  (x2, IC(.2))...? : % 2 7  1 C ( z 7 7 ? ) ) ) .  

Considering the previous works, it is shown that the 
sample size function satisfying PAC learnability is de- 
rived froni VC dimension of the class of the concepts. 
Although not refering strictly the sample size and 
learning algorithms our criterion, R(D, n)/R(O n )  and 

tion on X ,  A f AC,H is a learning function for G with 
sample size m(c,6) if for all 0 < € , b  < 1 and for all 
c E C, Pm">6)(W) 5 6, where W = {.? E Xm('>6) : 
errorA,,,p(Z) > E } .  It is insisted that usiiig a randomly 
drawn saniple of size VI(€, 6) of any tarpet coricept iii 
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C A produces, with probability at least 1 - 6, a hy- 
pothesis in H with error no more than e. If such an 
A exists, it, is said that C is uniformly learnable by 
H under the distribution P .  The smallest sample size 
m ( ~ ,  6) is called the sample complexity of A. 

Definztzons: Given nonempty concept class C C 2x 
arid a set of points S C X. IIc(S) denotes the sett of 
all subsets of S that can be obtained by intersecting S 
with a concept in C, that is, IIc(S) = { S f l c :  c E C}. 
If I'Ic(S) = 2s, then it is said that S is shattered by 
G The Vapnik-Chervonenkis (VC) dimension of C is 
t l i c  cardinality of the largest finite set of points 5" C X, 
that is shattered by C. If arbitrarily large finite sets are 
shattered, the VC dimension of C is infinite. For any 
integer m 2 O,II,(m) = max(lIIc(S)l) over dl S C X 
of' cardinality m. That is, VC dimension of C can be 
defined as the largest integer d such that &(d) = 2d,  
or infinity. 

Let C be any finite concept class. Then since it re- 
quires 2d distinct concepts to shatter a set of d points, 
no set of cardinality larger than loglCl can be shat- 
teIed. Hence, the VC dimension of C is at most IogJCI. 

According to the above definitions, It is shown that 
a ( haracterization of polynomial learnabiblity with r e  
spwt to domain dimension. Let the concept classes 
C,, C 2E" be all domains of Euclidean dimension 
n 2 1 and for each n, and C, 2 { o ~ i ) "  be all do- 
mains of Boolean dimension n 2 l and for each n. 
It is shown that the conrept classes Cn,n 2 1, are 
polynomially learnable if and only if the VC dimen- 
sion of C,, grows polynomially in n and there exists a 
polynomial time probabilistic algorithm for finding a 
consistent hypothesis in C:, for any sample of a tar- 
gvt concept in C,. Especially in the Boolean  cas^, the 
concept c~asses C, 5 2i09')", n 2 1. are polynomially 
learnable if and only if loglC,l grows polynomially in n 
a id  there exists a polynomial time probabilistic alge 
rit hm for finding a consistent hypothesis in C,, for any 
sample of a target concept in C,, Fkom the other as 
pIcts> a sufficient condition of polynomial learnability 
with respect to target complexity based cin the princi- 
ph> of preferring the simpler hypothesis, usually called 
0cani.s Razor. This result shows that if we can effi- 
('I(  ntly piodure a hypothesis that explains the sample 
ddta, and is sufficiently more compact than the sample 
tlcita, then we can feasibly learn. which may be inter- 
pri.ted as showing a relationship between ii kind of data 
compression and learning. Note that this information 
t tworetic approach is bawd on Minimum Description 
Lmgth (MDL,) of source coding theorem without clis 
t ( )I' t ion. 

3 Rate Distortion Theory 
The problem is formalized using the followiiig source 
model. Let U = (1~1~1~2:. . . , U,} be a discrete mem- 
oryless source X, and p l , p 2 , .  . . ,p,& be their proba- 
bilities. We assume throughout this paper tmhatj n 
is finite and that pi > 0 for each i, i = 1 . 2 , .  . , ,'n. 
The source output is a sequence 21,  z2? . . . of inde- 
perident selections fioni t,he given alphabet with t,heir 
given probabilities. The source sequence is to be r e p  
resented at the dest,ination by a sequence of letters 
y1, y2,. . ., each selected from a destination alphabet, 
V = {Q,v~, . . . , t i , , , } ,  where m is finite. Let, pi be 
the a priori probability of the input alphabet U*, and 
P(j l i )  be the transition probability of the output al- 
phabet vj. Let p ( i , j )  be the distortion measure which 
is defined for i = 1 , 2 , .  . . , n , j  = 1 , 2 , .  . . ,m, assigning 
a numerical value to the distortion, if source alpha- 
bet, U, is represented at  the destination by alphabet 
vj. Then both an average mutual information and an 
average distortion are determined, and the rate distor- 
tion function, R(D) ,  of the source relative to the given 
distoriton measure is defined as 

where 

The minimization in (1) is over all assignments of tran- 
sition probabilities subject t,o the constraint that the 
average distortion is less than or equal to the average 
distortion, D. Regardless of what processing is done, 
the average distortion must exceed D, if a channel with 
capacity less than R(D)  nats per source symbol con- 
nects the source to the destination for given D. It is 
reasonable to interpret R(D)  as the rat.e of the source, 
in nats per symbol, relative to the fidelity criterion D. 

Considering the above results, some general peoper- 
ties of this function have been summarized as follows. 
First of all, R ( D )  is nonnegative, nonincreasing, and 
convex in D. The nonnegativeity is obvious, since the 
average mutual information is nonnegative. Observe 
next that the minimization in (1) is over a constraint 
set which is enlarged as D is incresed. Thris the re- 
sulting minimum R( D) is nonincreasing wit,h D. Next, 
let D,,, be the smallest D for which R(Di = 0, we 
can calculat,e D,,, from 
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It, is noted that the smallest posible value for the aver- 
age distortion is 7ero and is achieved by mapping each 
letter ui of t,he source alphabet into an output letter uJ 
for which p ( i ,  j )  = 0. For D < 0, R ( D )  is undefinded, 
since by definition result, p ( i ,  j )  2 0. 

For a given source U and destination alphabet V, a 
source code of M code words with block length L is 
defined as a mapping from the set of source sequences 
of length L into a set of M code words, where each code 
word, yi = (yil, yj2,. . . , y i ~ )  is a sequence of L letters 
from the destinat.ion alphabet. The average distortion, 
d ~ ,  per letter of a source code is given by 

(4) 

where Pf,(x)  is t.he probability of a source sequence 
x = ( x ~ , x ~ ,  . . . .zL)! and y ( x )  is the code word that x 
is mapped into such that 

L 

P ( X .  Y) = P ( n ,  Uk). ( 5 )  
k= 1 

At the point to find how small c t ~  can be made for a 
given L and M ,  and we shall attempt to analyze the 
behavior of a randomly chosen set of code words. Let 
P(jli)  be a given set of transition probabilities between 
source and dest,ination lett,ers. Considering a discrete 
memoryless channel wit,h thew transition probabilities 
as a test channel, if P(j1i) achieves R(D)  for a given 
D, then the assoc:iat,ed t,est channel will achieve R(D) 
for D. The output, probabilities, p ( j ) ,  for given test 
channel, are 

p ( j )  = ~ ( j l i ) , j  = 1,2 , .  . . , m. (6) 
I 

For any given test channel, we consider an ensemble of 
source codes in which each letter of each code word is 
chosen independently with t,he probability assignment 
p ( j ) .  For a given set, of code words yi, i = 1 , 2 , .  . . , M , 
in the enseinble, each source sequence x will be mapped 
into that, code word yi for which p(x, y i )  is minimized 
over i. 

Considering simultarieously two different probabil- 
ity measures 011 the input and the output sequences, 
one is the test, channel ensemble and the other is 
the random coding ensemble. For the t'est chan- 
nel ensemble, the probability measure on input s e  
quences x = ( ~ 1 ~ x 2 , .  . . , x ~ )  aiid output sequences 
y = ( y ~ ,  y2.. . . , y ~ )  is given by P ~ ( x ) P ~ ( y l x )  where 

L 

k l  

In these equations, P(xk )  and P(yn J x k )  are the soiirce 
and test channel probabilities respectively. The other 
ensemble is the ensemble of codes in which M code 
words are independently chosen with the probabilit,y 
assignment PL (y), the source sequence is chosen with 
the same assignment PL(x)  as above, and for each code 
in the ensemble, x is mapped into that y , ?  denoted 
y ( x )  , that minimizes p(x , y i )  over 1 5 i 5 M .  

Following the above condition, we state both t.he neg- 
ative and positive parts of source coding theorem. 

Theorem 1 [7': Let R ( D )  be t,he rate distortion 
function of a discrete memoryless source with a finite 
distortion measure. For any D 2 0, any E 2 0, and any 
sufficiently large block length L, there exists no source 
code with M 5 exp{LR(D)} code words for which the 
average dist,ortion per letter satisfies d L  <: D + F. From 
the other aspect, there exists a source code wit,h M 5 
exp{L(R(D) + E)} code words for which the average 
didortion per letter satisfies dl; 5 D + F. 

4 A New Test for Learnability 
The interests of PAC learnability, e.g. sample coin- 
plexity and learning algorithms, focuses not guessing 
of each target concept but the class of concepts. We 
also analyze learnabilit,y of concept classes froni t,he 
viewpoint of their potential property. 

Considering instance space, the sample space Sr, t.he 
set of all m-samples over all c E C for all ' / r ~  2 1 call be 
regarded as the compressed instance space. In order 
to evaluate the compressed instance space using rate 
distortion theory, coding procedure must be defined to 
learning process. 

Dzfinition: Let X be the instance space, /XI(= 
N )  be the cardinality of X, and ICl(= K )  be 
the cadinality of C. The m-sample of xi E 
X generated by G is given by smp,,(C) = 

where IZi(cj) = 1, if xi E c,,12,(cj) = 0, ot,herwise. 
We define source and destination alphabet of the class 
C of concepts to be I,, (C), i = 1 , 2 , .  . . , N ,  and distor- 
tion measure of the class C of concepts, p(i,j),  tlo be 
z k = l  ]Izi ( c k )  - 12, ( r k ) ] / K .  Then coding procedure is 
as follows. 

((cl 7 I,, (cl)), (c27 12, (c2))~ . . . , (cK 1 Iz, (CK I)), CJ E c: 

K 

source-encoding source-decodiny - sc - H  k= 1 
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where A is the guessing function, that is, A : SC -+ H .  
For example, assuming that instance space X con- 

sists of 4 points, 21 ,  x2,53, x4, the sample space SC. is 
the set of all 2-samples, and block code length L is 16, 
the following mapping is one of the coding procedure 
with distortion. That is, practically, source sequences 
of length 16 means 4-times guessing processes to tar- 
get. condcepts without distortion, and source code of 
leiigth 16 means &times guessing processes to target 
concepts with some distortion. Note that the average 
distortion can be counted after decoding process by the 
guessing function A. 

~ ~ 1 2 2 ~ 3 ~ 4 ~ 1 2 2 2 3 2 4 2 1 5 2 2 3 ~ 4 5 1 ~ 2 2 3 ~ 4 )  

{ Z l 5 2 s l ~ 3 2 4 5 3 5 q 5 1 5 3 5 1 ~ 2 2 4 ~ )  
1 

In this case, block code length means the frequency of 
learning, and sufficiently large block code length would 
realize the estimation of the averqe performance of 
learnability of a given concept class for any sample 
size. Therefore, rate distortion function would clarify 
the potential property of the concept class regardless 
learnig algorithms. 

Practically, rate distortion function can be derived 
for any alphabet size, N, as follows. If U, and U, are 
functions of s such that 

N 

N 

and both of them are differentiable and log-convex, 
then a lower bound and a upper bound to R(D), RL (D) 
and Ru(D), are derived as the following set of para- 
riietric equations. 

d 
ds RL(D) = 10gN + SD - logu,, D = - logu,, (12) 

Example 1: Let X be the real line and let C be 
the set of all intervals(open or closed) on X. Then 
given any set S consisting of two points X I ,  ~2 E X,  we 
can find conccyts c1 c2, cg ,  c4 E C such that c1 n S = 
{rI},c2nS= ( r 2 } , ( ’ 3 n S = 0 , a n d c i ~ i S .  IfSconsists 
of three points X I  5 22 5 xg, then there is no concept 
c + f  C that contains X I  and 23 but not ~ 2 .  Thus the 
atbove problem is EL typical case that VC dimension of 

C is 2. If, however, N-points ~ 1 ~ x 2 , .  . . , XN E X. are 
considered, we can find IC1 = 2N concepts. When, for 
example, N = 4 we show the input alphabet as follows. 

Izl(C) = (0 0 0 0 1 1 1 1) 
Iz,(C) = ( 0 0 0  1 0  1 1  1) 

Iz3(C) = (0 0 1 1  0 0 1 1 )  
Iz,(C) = (0 1 1 1 0 0 0 1) 

To calculate the average distortion, t,he distortion ma- 
trix, [ p ( i , j ) ] ,  must be derived. The j-th column of the 
distoriton matrix is 

and taking z = e S l N ,  

6 = zj-1 + . . . + z + 1 + z + . . . + p - j  

A lower bound to 
such that 

independent on j cBn bt: derived, 

since zi 2 zN-j+;, for i,j 2 N, and z + . . .  + 2 j - l  

can be replaced by zN-j+‘ + . . . + z N - l .  Therefore, 
assuming sufficiently large alphabet size N, asymptotic 
behaviour of rate distortion function satisfies 

N f 
N + t  1 - e-t , t  > 01 R(D) x log - - t D  + log - 

where 
1 
t e t - 1  

D=--- ,t > o .  

(14) 

When the large scale problems are assunled, the sys- 
tem efficiency is defined by the normalized rate dis- 
tortion function R(D,  N)/R(O, N). If for any D > 0, 
R(D,  N)/R(O, N )  -+ 0 as N -+ CO, such a condition as- 
sure that for given compression-rate. the reduction of 
error-rate (= 1 - au-uracy) is feasible, assuming large 
scale problems. Note that tht. compression-rate is ap- 
proximately equivaleiit to the samplr size Thus in ac- 
cordance with the behaviour of thcl system efficiency, 
the potential property can be classified by elastic if for 
aiiy D > 0 R(D,  N)/R(O, N) --t 0 ils N - x . and 
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inelastic, if R(D, N)/R(O, N) > 0 as N + 0;) . Note 
that trivial case , D,,,(N) -+ 0 as N -+ 0;) , is also 
included in elastic, denoted trivial elastic. The elas  
ticity test was first proposed by J.Pear1 in Question- 
Answering Systems, which has evaluated the problems 
of memory versus error trade-offs. 

In Example 1. tht: system efficiency, such that 

shows elastic condition, i.e. the fastest possible rate of 
convergencc . 

We consider several classes of Boolian concepts. 
Example 2: Boolian Perfect Concept is the full class 

of disjunctive normal form (DNF) consisting of any ar- 
bitrary Boolean expression. Over n Boolian variables, 
the size of the illstance space N is 2", and the size of 
the concept class is 22n. When, for example, n = 2, we 
show the input alphabet as follows. 

I z , ( C B P )  = 

I z , ( c B p )  = 

(0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) 

(0 0 0 0 1 1 1 1 0  0 0 0 1 1 1 1) 

I , , ( c ~ p )  = (0 0 11 0 0 1 1 0  0 1 1 0  0 1 1) 

IZ, ( c ~ p )  = (0 1 0 1 0 1 (1 1 0 1 0 1 0 1 1) 

The average distortion is very simple, such that 

tis == 1 t z , ) s / z  = 1 + (2" -- l)eS/'. 
"fJ 

Thus the system efficiency is derived as follows. 

which shows inelastic. 
Example 3: Boolian conjuctions is also typical Boo- 

lian concept. Over n Boolian variables, the size of the 
instance space N is 2", and the size of the concept class 
is 3*, When, for example, R = 2, we show the input 
alphabet as follows 

Iz,(CBC) (1 0 0 0 0 0 1 1 1 1  1 ) 

I*.(&-) = (1 0 1 0 0 1 0  1 0  0 0 ) 

= 

I&(CBC) = (1 1 0  0 1 0  0 0 1 0  1 ) 

I z , ( c B C )  = (1 1 1 1 0  0 0 0 0 1 0  ) 

The average distortion, and the system efficiency is de- 
rived as follows. 

which shows trivial elastic. 
Fkom some examples, the concept classes with fillitme 

VC dimension often show elastic. In the future, the 
relationship between VC dimension and elasticity, and 
convergence speed in the case of elastic rondition will 
be strictly analysed. 
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