On the application of multi-class classification in physical therapy recommendation
- Jing Zhang
- Douglas P. Gross
- Osmar R. Zaiane, University of Alberta (Database)
Recommending optimal rehabilitation intervention for injured workers that would lead to successful return-to-work (RTW) is a challenge for clinicians. Currently, the clinicians are unable to identify with complete confidence which intervention is best for a patient and the referral is often made in trial and error fashion. Only 58% recommendations are successful in our dataset. We aim to develop an interpretable decision support system using machine learning to assist the clinicians. We use various re-sampling techniques to tackle the multi-class imbalance and class overlap problem in real world application data. The final model has shown promising potential in classification compared to human baseline and has been integrated into a web-based decision-support tool that requires additional validation in a clinical sample.
Citation
J. Zhang, D. Gross, O. Zaiane. "On the application of multi-class classification in physical therapy recommendation". Workshop on Data Analytics for Targeted Healthcare, April 2013.| Keywords: | multi-class imbalance, re-sampling, clinical decision-support, rule-based learning |
| Category: | In Workshop |
BibTeX
@misc{Zhang+al:13,
author = {Jing Zhang and Douglas P. Gross and Osmar R. Zaiane},
title = {On the application of multi-class classification in physical therapy
recommendation},
booktitle = {Workshop on Data Analytics for Targeted Healthcare},
year = 2013,
}Last Updated: January 13, 2020Submitted by Sabina P