Not Logged In

Publications in 2018

In Journal (refereed)

1. M. Uhlich, R. Greiner, B. Hoehn, M. Woghiren, I. Diaz, T. Ivanova, A. Murtha. "Improved Brain Tumor Segmentation via Registration-Based Brain ". Forecasting, 1(1), pp 59-69, September 2018. view
2. J. Tomczak, S. Zaręba, S. Ravanbakhsh, R. Greiner. "Low-dimensional Perturb-and-MAP approach for learning Restricted Boltzmann Machines". Neural Processing Letters, pp 21, September 2018. view
3. N. Borle, M. Feghhi, E. Stroulia, R. Greiner, A. Hindle. "Analyzing The Effects of Test Driven Development In GitHub". Empirical Software Engineering, 23(4), pp 1931-1958, August 2018. view
4. s. Tian, Y. Djoumbou Feunang, R. Greiner, D. Wishart. "CypReact: A Software Tool for in Silico Reactant Prediction for Human Cytochrome P450 Enzymes". Journal of Chemical Information and Modeling, 58(6), pp 1282–1291, May 2018. view
5. B. Sen, N. Borle, R. Greiner, M. Brown. "A General Prediction Model for the Detection of ADHD and Autism using Structural and Functional MRI". PLoS One, 13(4), pp 28, April 2018. view
6. S. Liang, R. Vega, X. Kong, W. Deng, Q. Wang, M. Li, X. Hu, A. Greenshaw, R. Greiner, T. Li. "Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features". Neuroscience Bulletin, 34(2), pp 312-320, April 2018. view
7. A. Andres, A. Montano-Loza, R. Greiner, M. Uhlich, P. Jin, B. Hoehn, D. Bigam, J. Shapiro, N. Kneteman. "A novel learning algorithm to predict individual survival after liver transplantation for primary sclerosing cholangitis". PLoS One, pp 14, March 2018. view
8. Y. Xiao, R. Greiner, M. Lewis. "Evaluation of machine learning methods for predicting eradication of aquatic invasive species". Biological Invasions, pp 1-19, March 2018. view
9. A. Narasimhan, R. Greiner, O. Bathe, V. Baracos, S. Damaraju. "Differentially expressed alternatively spliced genes in skeletal muscle from cancer patients with cachexia". Journal of Cachexia, Sarcopenia and Muscle, 9(1), pp 60-70, February 2018. view

In Conference (refereed)

10. N. Hassanpour, R. Greiner. "A Novel Evaluation Methodology for Assessing Off-Policy Learning Methods in Contextual Bandits". Canadian Conference on Artificial Intelligence, pp 12, May 2018. PDFview

In Workshop

11. L. Kumar, R. Greiner. "Survival prediction using microarray data - A topic modeling approach". Workshop on Computational Frameworks for Personalization, October 2018. view
12. R. Vega, R. Greiner. "Finding Effective Ways to (Machine) Learn fMRI-based Classifiers from Multi-Site Data". Machine Learning in Clinical Neuroimaging (MLCN), pp 10, September 2018. PDFview
13. N. Hassanpour, R. Greiner. "CounterFactual Regression with Importance Sampling Weights". ICML 2018 CausalML: Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, pp 5, July 2018. PDFview

Other Categories

14. B. Wubie, A. Andres, R. Greiner, B. Hoehn, A. Montano-Loza, N. Kneteman, G. Heo. "Cluster Identification via Persistent Homology and other Clustering Techniques, with Application to Liver Transplant Data". Research in Computational Topology, Springer, (ed: Chambers, Erin, Fasy, Brittany Terese, Ziegelmeier, Lori ), pp 145-177, March 2018. view
University of Alberta Logo AICML Logo